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Introduction

1.1
Biology in Time and Space

Biological systems like organisms, cells, or biomolecules are highly organized in
their structure and function. They have developed during evolution and can only be
fully understood in this context. To study them and to apply mathematical,
computational, or theoretical concepts, we have to be aware of the following
circumstances.

The continuous reproduction of cell compounds necessary for living and the
respective flow of information is captured by the central dogma of molecular biology,
which can be summarized as follows: genes code for mRNA, mRNA serves as
template for proteins, and proteins perform cellular work. Although information is
stored in the genes in form of DNA sequence, it is made available only through the
cellular machinery that can decode this sequence and can translate it into structure
and function. In this book, this will be explained from various perspectives.

A description of biological entities and their properties encompasses different
levels of organization and different time scales. We can study biological phenomena
at the level of populations, individuals, tissues, organs, cells, and compartments
down to molecules and atoms. Length scales range from the order of meter (e.g., the
size of whale or human) to micrometer for many cell types, down to picometer for
atom sizes. Time scales include millions of years for evolutionary processes, annual
and daily cycles, seconds for many biochemical reactions, and femtoseconds for
molecular vibrations. Figure 1.1 gives an overview about scales.

In a unified view of cellular networks, each action of a cell involves different levels
of cellular organization, including genes, proteins, metabolism, or signaling path-
ways. Therefore, the current description of the individual networks must be inte-
grated into a larger framework.

Many current approaches pay tribute to the fact that biological items are subject to
evolution. The structure and organization of organisms and their cellular machinery
has developed during evolution to fulfill major functions such as growth, prolifera-
tion, and survival under changing conditions. If parts of the organism or of the cell
fail to perform their function, the individual might become unable to survive or
replicate.
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Figure 1.1 Length and time scales in biology. Data from the
BioNumbers database http://bionumbers.hms.harvard.edu.

One consequence of evolution is the similarity of biological organisms from
different species. This similarity allows for the use of model organisms and for the
critical transfer of insights gained from one cell type to other cell types. Applications
include, e.g., prediction of protein function from similarity, prediction of network
properties from optimality principles, reconstruction of phylogenetic trees, or the
identification of regulatory DNA sequences through cross-species comparisons. But
the evolutionary process also leads to genetic variations within species. Therefore,
personalized medicine and research is an important new challenge for biomedical
research.

1.2
Models and Modeling

If we observe biological processes, we are confronted with various complex processes
that cannot be explained from first principles and the outcome of which cannot
reliably be foreseen from intuition. Even if general biochemical principles are well
established (e.g., the central dogma of transcription and translation, the biochemistry
of enzyme-catalyzed reactions), the biochemistry of individual molecules and
systems is often unknown and can vary considerably between species. Experiments
lead to biological hypotheses about individual processes, but it often remains unclear
if these hypotheses can be combined into a larger coherent picture because it is often
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difficult to foresee the global behavior of a complex system from knowledge of its
parts. Mathematical modeling and computer simulations can help us understand the
internal nature and dynamics of these processes and to arrive at predictions about
their future development and the effect of interactions with the environment.

1.2.1
What is a Model?

The answer to this question will differ among communities of researchers. In a broad
sense, a model is an abstract representation of objects or processes that explains
features of these objects or processes (Figure 1.2). A biochemical reaction network
can be represented by a graphical sketch showing dots for metabolites and arrows for
reactions; the same network could also be described by a system of differential
equations, which allows simulating and predicting the dynamic behavior of that
network. If a model is used for simulations, it needs to be ensured that it faithfully
predicts the system’s behavior — at least those aspects that are supposed to be covered
by the model. Systems biology models are often based on well-established physical
laws that justify their general form, for instance, the thermodynamics of chemical
reactions; besides this, a computational model needs to make specific statements
about a system of interest — which are partially justified by experiments and
biochemical knowledge, and partially by mere extrapolation from other systems.
Such a model can summarize established knowledge about a system in a coherent
mathematical formulation. In experimental biology, the term “model” is also used to
denote a species that is especially suitable for experiments, for example, a genetically
modified mouse may serve as a model for human genetic disorders.

1.2.2
Purpose and Adequateness of Models

Modeling is a subjective and selective procedure. A model represents only specific
aspects of reality but, if done properly, this is sufficient since the intention of
modeling is to answer particular questions. If the only aim is to predict system
outputs from given input signals, a model should display the correct input-output
relation, while its interior can be regarded as a black box. But if instead a detailed
biological mechanism has to be elucidated, then the system’s structure and the
relations between its parts must be described realistically. Some models are meant to
be generally applicable to many similar objects (e.g., Michaelis—Menten kinetics
holds for many enzymes, the promoter—operator concept is applicable to many genes,
and gene regulatory motifs are common), while others are specifically tailored to one
particular object (e.g., the 3D structure of a protein, the sequence of a gene, or a model
of deteriorating mitochondria during aging). The mathematical part can be kept as
simple as possible to allow for easy implementation and comprehensible results. Or it
can be modeled very realistically and be much more complicated. None of the
characteristics mentioned above makes a model wrong or right, but they determine
whether a model is appropriate to the problem to be solved. The phrase “essentially,
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Figure 1.2 Typical abstraction steps in
mathematical modeling. (a) Escherichia coli
bacteria produce thousands of different proteins.
If a specific protein type is fluorescently labeled,
cells glow under the microscope according to the
concentration of this enzyme (Courtesy of

M. Elowitz). (b) In a simplified mental model,
we assume that cells contain two enzymes of
interest, X (red) and Y (blue) and that the
molecules (dots) can freely diffuse within the cell.
All other substances are disregarded for the

can be translated into different sorts of
dynamic models; in this case, deterministic
rate equations for the protein concentrations
x and y. (f) By solving the model equations,
predictions for the time-dependent

concentrations can be obtained. If these
predictions do not agree with experimental
data, it indicates that the model is wrong or
too much simplified. In both cases, it has to be
refined.

sake of simplicity. (c) The interactions between
the two protein types can be drawn in a wiring
scheme: each protein can be produced or
degraded (black arrows). In addition, we
assume that proteins of type X can increase

all models are wrong, but some are useful” coined by the statistician George Box is
indeed an appropriate guideline for model building.

1.2.3
Advantages of Computational Modeling

Models gain their reference to reality from comparison with experiments, and their
benefits therefore depend on the quality of the experiments used. Nevertheless,
modeling combined with experimentation has alot of advantages compared to purely
experimental studies:

e Modeling drives conceptual clarification. It requires verbal hypotheses to be made
specific and conceptually rigorous.

» Modeling highlights gaps in knowledge or understanding. During the process
of model formulation, unspecified components or interactions have to be
determined.
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Modeling provides independence of the modeled object.
Time and space may be stretched or compressed ad libitum.

Solution algorithms and computer programs can be used independently of the
concrete system.

Modeling is cheap compared to experiments.

Models exert by themselves no harm on animals or plants and help to reduce ethical
problems in experiments. They do not pollute the environment.

Modeling can assist experimentation. With an adequate model, one may test
different scenarios that are not accessible by experiment. One may follow time
courses of compounds that cannot be measured in an experiment. One may
impose perturbations that are not feasible in the real system. One may cause
precise perturbations without directly changing other system components, which
is usually impossible in real systems. Model simulations can be repeated often and
for many different conditions.

Model results can often be presented in precise mathematical terms that allow for
generalization. Graphical representation and visualization make it easier to
understand the system.

Finally, modeling allows for making well-founded and testable predictions.

The attempt to formulate current knowledge and open problems in mathematical

terms often uncovers a lack of knowledge and requirements for clarification.

Furthermore, computational models can be used to test whether proposed explana-
tions of biological phenomena are feasible. Computational models serve as reposi-
tories of current knowledge, both established and hypothetical, about how systems
might operate. At the same time, they provide researchers with quantitative descrip-

tions of this knowledge and allow them to simulate the biological process, which
serves as a rigorous consistency test.

1.3
Basic Notions for Computational Models

1.3.1
Model Scope

Systems biology models consist of mathematical elements that describe properties of
a biological system, for instance, mathematical variables describing the concentra-

tions of metabolites. As a model can only describe certain aspects of the system, all

other properties of the system (e.g., concentrations of other substances or the
environment of a cell) are neglected or simplified. It is important — and to some
extent, an art — to construct models in such ways that the disregarded properties do
not compromise the basic results of the model.
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1.3.2
Model Statements

Besides the model elements, a model can contain various kinds of statements and
equations describing facts about the model elements, most notably, their temporal
behavior. In kinetic models, the basic modeling paradigm considered in this book,
the dynamics is determined by a set of ordinary differential equations describing
the substance balances. Statements in other model types may have the form of
equality or inequality constraints (e.g., in flux balance analysis), maximality postu-
lates, stochastic processes, or probabilistic statements about quantities that vary in
time or between cells.

1.33
System State

In dynamical systems theory, a system is characterized by its state, a snapshot of the
system at a given time. The state of the system is described by the set of variables that
must be kept track of in a model: in deterministic models, it needs to contain enough
information to predict the behavior of the system for all future times. Each modeling
framework defines what is meant by the state of the system. In kinetic rate equation
models, for example, the state is a list of substance concentrations. In the corre-
sponding stochastic model, it is a probability distribution or a list of the current
number of molecules of a species. In a Boolean model of gene regulation, the state isa
string of bits indicating for each gene whether it is expressed (“1”) or not expressed
(“0”). Also the temporal behavior can be described in fundamentally different ways.
In a dynamical system, the future states are determined by the current state, whilein a
stochastic process, the future states are not precisely predetermined. Instead, each
possibly future history has a certain probability to occur.

134
Variables, Parameters, and Constants

The quantities in a model can be classified as variables, parameters, and constants. A
constant is a quantity with a fixed value, such as the natural number e or Avogadro’s
number (number of molecules per mole). Parameters are quantities that have a given
value, such as the K, value of an enzyme in a reaction. This value depends on the
method used and on the experimental conditions and may change. Variables are
quantities with a changeable value for which the model establishes relations. A subset
of variables, the state variables, describes the system behavior completely. They can
assume independent values and each of them is necessary to define the system state.
Their number is equivalent to the dimension of the system. For example, the
diameter d and volume V of a sphere obey the relation V= nd’/6, where © and 6
are constants, Vand d are variables, but only one of them is a state variable since the
relation between them uniquely determines the other one.
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Whether a quantity is a variable or a parameter depends on the model. In reaction
kinetics, the enzyme concentration appears as a parameter. However, the enzyme
concentration itself may change due to gene expression or protein degradation and in
an extended model, it may be described by a variable.

1.3.5
Model Behavior

Two fundamental factors that determine the behavior of a system are (i) influences
from the environment (input) and (ii) processes within the system. The system
structure, that is, the relation among variables, parameters, and constants, deter-
mines how endogenous and exogenous forces are processed. However, different
system structures may still produce similar system behavior (output); therefore,
measurements of the system output often do not suffice to choose between alterna-
tive models and to determine the system’s internal organization.

1.3.6
Model Classification

For modeling, processes are classified with respect to a set of criteria.

o A structural or qualitative model (e.g., a network graph) specifies the interactions
among model elements. A quantitative model assigns values to the elements and to
their interactions, which may or may not change.

e In a deterministic model, the system evolution through all following states can be
predicted from the knowledge of the current state. Stochastic descriptions give
instead a probability distribution for the successive states.

e The nature of values that time, state, or space may assume distinguishes a

discrete model (where values are taken from a discrete set) from a continuous

model (where values belong to a continuum).

Reversible processes can proceed in a forward and backward direction. Irreversibil-

ity means that only one direction is possible.

Periodicity indicates that the system assumes a series of states in the time interval

{t, t + At} and again in the time interval {t 4+ iAt, t+ (i + 1)At} for i=1,2,....

1.3.7
Steady States

The concept of stationary states is important for the modeling of dynamical
systems. Stationary states (other terms are steady states or fixed points) are deter-
mined by the fact that the values of all state variables remain constant in time. The
asymptotic behavior of dynamic systems, that is, the behavior after a sufficiently
long time, is often stationary. Other types of asymptotic behavior are oscillatory or
chaotic regimes.
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The consideration of steady states is actually an abstraction that is based on a
separation of time scales. In nature, everything flows. Fast and slow processes —
ranging from formation and breakage of chemical bonds within nanoseconds to
growth of individuals within years — are coupled in the biological world. While fast
processes often reach a quasi-steady state after a short transition period, the change of
the value of slow variables is often negligible in the time window of consideration.
Thus, each steady state can be regarded as a quasi-steady state of a system that is
embedded in a larger nonstationary environment. Despite this idealization, the
concept of stationary states is important in kinetic modeling because it points to
typical behavioral modes of the system under study and it often simplifies the
mathematical problems.

Other theoretical concepts in systems biology are only rough representations of
their biological counterparts. For example, the representation of gene regulatory
networks by Boolean networks, the description of complex enzyme kinetics by simple
mass action laws, or the representation of multifarious reaction schemes by black
boxes proved to be helpful simplification. Although being a simplification, these
models elucidate possible network properties and help to check the reliability of basic
assumptions and to discover possible design principles in nature. Simplified models
can be used to test mathematically formulated hypothesis about system dynamics,
and such models are easier to understand and to apply to different questions.

1.3.8
Model Assignment is not Unique

Biological phenomena can be described in mathematical terms. Models developed
during the last decades range from the description of glycolytic oscillations with
ordinary differential equations to population dynamics models with difference
equations, stochastic equations for signaling pathways, and Boolean networks for
gene expression. But it is important to realize that a certain process can be described
in more than one way: a biological object can be investigated with different
experimental methods and each biological process can be described with different
(mathematical) models. Sometimes, a modeling framework represents a simplified
limiting case (e.g., kinetic models as limiting case of stochastic models). On the other
hand, the same mathematical formalism may be applied to various biological
instances: statistical network analysis, for example, can be applied to cellular-
transcription networks, the circuitry of nerve cells, or food webs.

The choice of a mathematical model or an algorithm to describe a biological object
depends on the problem, the purpose, and the intention of the investigator. Modeling
has to reflect essential properties of the system and different models may highlight
different aspects of the same system. This ambiguity has the advantage that different
ways of studying a problem also provide different insights into the system. However,
the diversity of modeling approaches makes it still very difficult to merge established
models (e.g., for individual metabolic pathways) into larger supermodels (e.g.,
models of complete cell metabolism).
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1.4
Data Integration

Systems biology has evolved rapidly in the last years driven by the new high-
throughput technologies. The most important impulse was given by the large
sequencing projects such as the human genome project, which resulted in the full
sequence of the human and other genomes [1, 2]. Proteomics technologies have been
used to identify the translation status of complete cells (2D-gels, mass spectrometry)
and to elucidate protein—protein interaction networks involving thousands of com-
ponents [3]. However, to validate such diverse high-throughput data, one needs to
correlate and integrate such information. Thus, an important part of systems biology
is data integration.

On the lowest level of complexity, data integration implies common schemes
for data storage, data representation, and data transfer. For particular experimen-
tal techniques, this has already been established, for example, in the field of
transcriptomics with minimum information about a microarray experiment [4],
in proteomics with proteomics experiment data repositories [5], and the Human
Proteome Organization consortium [6]. On a more complex level, schemes have
been defined for biological models and pathways such as Systems Biology
Markup Language (SBML) [7] and CellML [8], which use an XML-like language
style.

Data integration on the next level of complexity consists of data correlation. This
is a growing research field as researchers combine information from multiple
diverse data sets to learn about and explain natural processes [9, 10]. For example,
methods have been developed to integrate the results of transcriptome or proteome
experiments with genome sequence annotations. In the case of complex disease
conditions, it is clear that only integrated approaches can link clinical, genetic,
behavioral, and environmental data with diverse types of molecular phenotype
information and identify correlative associations. Such correlations, if found, are
the key to identifying biomarkers and processes that are either causative or
indicative of the disease. Importantly, the identification of biomarkers (e.g.,
proteins, metabolites) associated with the disease will open up the possibility to
generate and test hypotheses on the biological processes and genes involved in this
condition. The evaluation of disease-relevant data is a multistep procedure involv-
ing a complex pipeline of analysis and data handling tools such as data normaliza-
tion, quality control, multivariate statistics, correlation analysis, visualization
techniques, and intelligent database systems [11]. Several pioneering approaches
have indicated the power of integrating data sets from different levels: for example,
the correlation of gene membership of expression clusters and promoter sequence
motifs [12]; the combination of transcriptome and quantitative proteomics data in
order to construct models of cellular pathways [10]; and the identification of novel
metabolite-transcript correlations [13]. Finally, data can be used to build and refine
dynamical models, which represent an even higher level of data integration.

1
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1.5
Standards

As experimental techniques generate rapidly growing amounts of data and large
models need to be developed and exchanged, standards for both experimental
procedures and modeling are a central practical issue in systems biology. Information
exchange necessitates a common language about biological aspects. One seminal
example is the gene ontology which provides a controlled vocabulary that can be
applied to all organisms, even as the knowledge about genes and proteins continues
to accumulate. The SBML [7] has been established as exchange language for
mathematical models of biochemical reaction networks. A series of “minimum-
information-about” statements based on community agreement defines standards
for certain types of experiments. Minimum information requested in the annotation
of biochemical models (MIRIAM) [14] describes standards for this specific type of
systems biology models.
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