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Modeling of Biochemical Systems

2.1
Kinetic Modeling of Enzymatic Reactions

Summary

The rate of an enzymatic reaction, i.e., the velocity by which the execution of the
reaction changes the concentrations of its substrates, is determined by concentra-
tions of its substrates, concentration of the catalyzing enzyme, concentrations of
possiblemodifiers, and by certain parameters. We introduce different kinetic laws for
reversible and irreversible reactions, for reactions with varying numbers of sub-
strates, and for reactions that are subject to inhibition or activation. The derivations of
the rate laws are shown and the resulting restrictions for their validity and applicability.
Saturation andsigmoidal kinetics are explained. The connection to thermodynamics is
shown.

Deterministic kinetic modeling of individual biochemical reactions has a long
history. The Michaelis–Menten model for the rate of an irreversible one-substrate
reaction is an integral part of biochemistry, and the Km value is amajor characteristic
of the interaction between enzyme and substrate. Biochemical reactions are catalyzed
by enzymes, i.e., specific proteins which often function in complex with cofactors.
They have a catalytic center, are usually highly specific, and remain unchanged by the
reaction. One enzymemolecule can catalyze thousands of reactions per second (this
so-called turnover number ranges from 102 s�1 to 107 s�1). Enzyme catalysis leads to
a rate acceleration of about 106- up to 1012-fold compared to the noncatalyzed,
spontaneous reaction.
In this chapter, we make you familiar with the basic concepts of the mass action

rate law. We will show how you can derive and apply more advanced kinetic
expressions. The effect of enzyme inhibitors and activators will be discussed. The
thermodynamic foundations and constraints are introduced.
The basic quantities are the concentration S of a substance S, i.e., the number n of

molecules (or, alternatively, moles) of this substance per volume V, and the rate v of a
reaction, i.e., the change of concentration S per time t. This type of modeling is
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macroscopic and phenomenological, compared to the microscopic approach, where
single molecules and their interactions are considered. Chemical and biochemical
kinetics rely on the assumption that the reaction rate v at a certain point in time and
space can be expressed as a unique function of the concentrations of all substances at
this point in time and space. Classical enzyme kinetics assumes for sake of simplicity
a spatial homogeneity (the �well-stirred� test tube) and no direct dependency of the
rate on time

vðtÞ ¼ vðSðtÞÞ: ð2:1Þ
Inmore advancedmodeling approaches, longing towardwhole-cellmodeling, spatial
inhomogeneities are taken into account, paying tribute to the fact that many
components are membrane-bound or that cellular structures hinder the free move-
ment of molecules. But, in the most cases, one can assume that diffusion is rapid
enough to allow for an even distribution of all substances in space.

2.1.1
The Law of Mass Action

Biochemical kinetics is based on the mass action law, introduced by Guldberg and
Waage in the nineteenth century [1–3]. It states that the reaction rate is proportional to
the probability of a collision of the reactants. This probability is in turn proportional to
the concentration of reactants to the power of the molecularity, that is the number in
which they enter the specific reaction. For a simple reaction such as

S1þ S2 Ð 2P; ð2:2Þ
the reaction rate reads

v ¼ vþ�v� ¼ kþ S1 � S2�k�P2: ð2:3Þ

where v is the net rate; vþ and v� are the rates of the forward and backward reactions;
and kþ and k� are the kinetic or rate constants, i.e., the respective proportionality
factors.
The molecularity is 1 for S1 and for S2 and 2 for P, respectively. If we measure the

concentration inmol l�1 (orM) and the time in seconds (s), then the rate has the unit
M s�1. Accordingly, the rate constants for bimolecular reactions have the unit
M�1 s�1. Rate constants of monomolecular reactions have the dimension s�1. The
general mass action rate law for a reaction transforming mi substrates with con-
centrations Si into mj products with concentrations Pj reads

v ¼ vþ�v� ¼ kþ
Ymi

i¼1
Snii �k�

Ymj

j¼1
P
nj
j ; ð2:4Þ

where ni and nj denote the respective molecularities of Si and Pj in this reaction.
The equilibrium constant Keq (we will also use the simpler symbol q) characterizes

the ratio of substrate and product concentrations in equilibrium (Seq andPeq), i.e., the
statewith equal forward and backward rate. The rate constants are related toKeq in the
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following way:

Keq ¼ kþ
k�
¼

Qmj

j¼1
P
nj
j;eq

Qmi

i¼1
Snii;eq

ð2:5Þ

The relation between the thermodynamic and the kinetic description of biochemical
reactions will be outlined in Section 2.1.2.
The equilibrium constant for the reaction given in Eq. (2.2) is Keq ¼

P2
eq=ðS1;eq � S2;eqÞ. The dynamics of the concentrations away from equilibrium is

described by the ODEs.

d
dt
S1 ¼ d

dt
S2 ¼ �v and

d
dt
P ¼ 2v: ð2:6Þ

The time course of S1, S2, and P is obtained by integration of these ODEs (see
Section 2.3).

Example 2.1

The kinetics of a simple decay like

S! ð2:7Þ
is described by v¼ kS and dS/dt¼�kS. Integration of this ODE from time t¼ 0
with the initial concentration S0 to an arbitrary time t with concentration S(t),Ð S
S0
dS=S ¼ � Ð tt¼0 k dt, yields the temporal expression SðtÞ ¼ S0e�kt.

2.1.2
Reaction Kinetics and Thermodynamics

An important purpose of metabolism is to extract energy from nutrients, which is
necessary for the synthesis of molecules, growth, and proliferation. We distinguish
between energy-supplying reactions, energy-demanding reactions, and energetically
neutral reactions. The principles of reversible thermodynamics and their application
to chemical reactions allow understanding of energy circulation in the cell.
A biochemical process is characterized by the direction of the reaction, by whether

it occurs spontaneously or not, and by the position of the equilibrium. The first law of
thermodynamics, i.e., the law of energy conservation, tells us that the total energy of a
closed system remains constant during any process. The second law of thermody-
namics states that a process occurs spontaneous only if it increases the total entropy
of the system. Unfortunately, entropy is usually not directly measurable. A more
suitable measure is the Gibbs free energyG, which is the energy capable of carrying
out work under isotherm–isobar conditions, i.e., at constant temperature and
constant pressure. The change of the free energy is given as
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DG ¼ DH�TDS; ð2:8Þ
where DH is the change in enthalpy, DS the change in entropy, and T the absolute
temperature in Kelvin. DG is a measure for the driving force, the spontaneity of a
chemical reaction. The reaction proceeds spontaneous under release of energy, if
DG< 0 (exergonic process). IfDG> 0, then the reaction is energetically not favorable
and will not occur spontaneously (endergonic process). DG¼ 0 means that the
system has reached its equilibrium. Endergonic reactionsmay proceed if they obtain
energy from a strictly exergonic reaction by energetic coupling. In tables, free energy
is usually given for standard conditions (DG�), i.e., for a concentration of the reaction
partners of 1M, a temperature of T¼ 298K, and, for gaseous reactions, a pressure of
p¼ 98, 1 kPa¼ 1 atm. The unit is kJmol�1. Free energy differences satisfy a set of
relations as follows. The free energy difference for a reaction can be calculated from
the balance of free energies of formation of its products and substrates:

DG ¼
X

GP�
X

GS: ð2:9Þ

The enzyme cannot change the free energies of the substrates and products of a
reaction, neither their difference, but it changes the way the reaction proceeds
microscopically, the so-called reaction path, thereby lowering the activation energy
for the reaction. The Transition State Theory explains this as follows. During the
course of a reaction, the metabolites must pass one or more transition states of
maximal free energy, in which bonds are solved or newly formed. The transition state
is unstable; the respective molecule configuration is called an activated complex. It
has a lifetime of around one molecule vibration, 10�14–10�13 s, and it can hardly be
experimentally verified. The difference DG# of free energy between the reactants and
the activated complex determines the dynamics of a reaction: the higher this
difference, the lower the probability that the molecules may pass this barrier and
the lower the rate of the reaction. The value of DG# depends on the type of altered
bonds, on steric, electronic, or hydrophobic demands, and on temperature.
Figure 2.1 presents a simplified view of the reaction course. The substrate and the

product are situated in localminima of the free energy; the active complex is assigned
to the localmaximum. The free energy differenceDG is proportional to the logarithm
of the equilibrium constant Keq of the respective reaction:

DG ¼ �RT ln Keq; ð2:10Þ
where R is the gas constant, 8.314 Jmol�1 K�1. The value of DG# corresponds to the
kinetic constant kþ of the forward reaction (Eqs. (2.3)–(2.5)) by DG#¼�RT ln kþ ,
while DG# þ DG is related to the rate constant k� of the backward reaction.
The interaction of the reactants with an enzyme may alter the reaction path and,

thereby, lead to lower values of DG# as well as higher values of the kinetic constants.
Furthermore, the free energymay assumemore local minima andmaxima along the
path of reaction. They are related to unstable intermediary complexes. Values for the
difference of free energy for some biologically important reactions are given in
Table 2.1.
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A biochemical reaction is reversible if it may proceed in both directions, leading to
a positive or negative sign of the rate v. The actual direction depends on the current
reactant concentrations. In theory, every reaction should be reversible. In practice, we
can considermany reactions as irreversible since (i) reactants in cellular environment
cannot assume any concentration, (ii) coupling of a chemical conversion to ATP
consumption leads to a severe drop in free energy and therefore makes a reaction
reversal energetically unfavorable, and (iii) for compound destruction, such as
protein degradation, reversal by chance is extremely unlikely.
The detailed consideration of enzyme mechanisms by applying the mass action

law for the single events has led to a number of standard kinetic descriptions, which
will be explained in the following.

Table 2.1 Values of DG00 and Keq for some important reactionsa.

Reactions DG00 (kJ mol�1)

2H2þO2! 2H2O �474
2H2O2! 2H2OþO2 �99
PPiþH2O! 2Pi �33.49
ATPþH2O!ADPþPi �30.56
Glucose-6-phosphateþH2O!GlucoseþPi �13.82
GlucoseþPi!Glucose-6-phosphateþH2O þ13.82
Glucose-1-phosphate!Glucose-6-phosphate �7.12
Glucose-6-phosphate!Fructose-6-phosphate þ1.67
Glucoseþ 6O2! 6CO2þ 6H2O �2890
aSource: ZITAT: Lehninger, A.L. Biochemistry, 2nd edition, New York, Worth, 1975, p. 397.
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Figure 2.1 Change of free energy along the course of a reaction.
The substrate and the product are situated in local minima of the
free energy; the active complex is assigned to the local maximum.
The enzyme may change the reaction path and thereby lower the
barrier of free energy.
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2.1.3
Michaelis–Menten Kinetics

Brown [4] proposed an enzymaticmechanism for invertase, catalyzing the cleavage of
saccharose to glucose and fructose. This mechanism holds in general for all one-
substrate reactions without backward reaction and effectors, such as

EþS�! �
k1

k�1
ES�!k2 EþP: ð2:11Þ

It comprises a reversible formation of an enzyme–substrate complex ES from the
free enzyme E and the substrate S and an irreversible release of the product P. The
ODE system for the dynamics of this reaction reads

dS
dt
¼ �k1E � Sþ k�1ES; ð2:12Þ

dES
dt
¼ k1E � S�ðk�1þ k2ÞES; ð2:13Þ

dE
dt
¼ �k1E � Sþðk�1þ k2ÞES; ð2:14Þ

dP
dt
¼ k2ES: ð2:15Þ

The reaction rate is equal to the negative decay rate of the substrate as well as to the
rate of product formation:

v ¼ � dS
dt
¼ dP

dt
: ð2:16Þ

This ODE system (Eqs. (2.12)–(2.16)) cannot be solved analytically. Different
assumptions have been used to simplify this system in a satisfactory way. Michaelis
and Menten [5] considered a quasi-equilibrium between the free enzyme and the
enzyme–substrate complex, meaning that the reversible conversion of E and S to ES
is much faster than the decomposition of ES into E and P, or in terms of the kinetic
constants,

k1; k�1 � k2: ð2:17Þ

Briggs and Haldane [6] assumed that during the course of reaction a state is
reached where the concentration of the ES complex remains constant, the so-called
quasi-steady state. This assumption is justified only if the initial substrate concen-
tration ismuch larger than the enzyme concentration, Sðt ¼ 0Þ � E, otherwise such
a state will never be reached. In mathematical terms, we obtain

dES
dt
¼ 0: ð2:18Þ
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In the following, we derive an expression for the reaction rate from the ODE
system (2.12)–(2.15) and the quasi-steady-state assumption for ES. First, adding
Eqs. (2.13) and (2.14) results in

dES
dt
þ dE

dt
¼ 0 or Etotal ¼ EþES ¼ constant: ð2:19Þ

This expression shows that enzyme is neither produced nor consumed in this
reaction; it may be free or part of the complex, but its total concentration remains
constant. Introducing (2.19) into (2.13)under thesteady-stateassumption(2.18)yields

ES ¼ k1EtotalS
k1Sþ k�1þ k2

¼ EtotalS
Sþðk�1þ k2Þ=k1 : ð2:20Þ

For the reaction rate, this gives

v ¼ k2EtotalS
Sþððk�1þ k2Þ=k1Þ : ð2:21Þ

In enzyme kinetics, it is convention to present Eq. (2.21) in a simpler form, which
is important in theory and practice

v ¼ VmaxS
SþKm

: ð2:22Þ

Equation (2.22) is the expression for Michaelis–Menten kinetics. The parameters
have the following meaning: the maximal velocity,

Vmax ¼ k2Etotal; ð2:23Þ
is the maximal rate that can be attained, when the enzyme is completely saturated
with substrate. The Michaelis constant,

Km ¼ k�1þ k2
k1

; ð2:24Þ

is equal to the substrate concentration that yields the half-maximal reaction rate. For
the quasi-equilibrium assumption (Eq. (2.17)), it holds that Kmffi k�1/k1. The
maximum velocity divided by the enzyme concentration (here k2¼ vmax/Etotal) is
often called the turnover number, kcat. Themeaning of the parameters is illustrated in
the plot of rate versus substrate concentration (Figure 2.2).

2.1.3.1 How to Derive a Rate Equation
Below, we will present some enzyme kinetic standard examples to derive a rate
equation. Individual mechanisms for your specific enzyme of interest may be more
complicated or merely differ from these standards. Therefore, we summarize here
the general way of deriving a rate equation.

1. Draw a wiring diagram of all steps to consider (e.g., Eq. (2.11)). It contains all
substrates and products (S and P) and n free or bound enzyme species (E and ES).
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2. The right sites of the ODEs for the concentrations changes sum up the rates of all
steps leading to or away from a certain substance (e.g., Eqs. (2.12)–(2.15)). The
rates follow mass action kinetics (Eq. (2.3)).

3. The sum of all enzyme-containing species is equal to the total enzyme concen-
trationEtotal (the right site of all differential equations for enzyme species sums up
to zero). This constitutes one equation.

4. The assumption of quasi-steady state for n� 1 enzyme species (i.e., setting the
right sites of the respective ODEs equal to zero) together with (3.) result in n
algebraic equations for the concentrations of the n enzyme species.

5. The reaction rate is equal to the rate of product formation (e.g., Eq. (2.16)). Insert
the respective concentrations of enzyme species resulting from (4.).

2.1.3.2 Parameter Estimation and Linearization of the Michaelis–Menten Equation
To assess the values of the parameters Vmax and Km for an isolated enzyme, one
measures the initial rate for different initial concentrations of the substrate. Since
the rate is a nonlinear function of the substrate concentration, one has to determine
the parameters by nonlinear regression. Another way is to transform Eq. (2.22) to a
linear relation between variables and then apply linear regression.
The advantage of the transformed equations is that one may read the parameter

value more or less directly from the graph obtained by linear regression of the
measurement data. In the plot by Lineweaver and Burk [7] (Table 2.2), the values for
Vmax and Km can be obtained from the intersections of the graph with the ordinate
and the abscissa, respectively. The Lineweaver–Burk plot is also helpful to easily
discriminate different types of inhibition (see below). The drawback of the trans-
formed equations is that they may be sensitive to errors for small or high substrate

V
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Figure 2.2 Dependence of reaction rate v on substrate
concentration S in Michaelis–Menten kinetics. Vmax denotes the
maximal reaction rate that can be reached for large substrate
concentration.Km is the substrate concentration that leads to half-
maximal reaction rate. For low substrate concentration, v
increases almost linearly with S, while for high substrate
concentrations v is almost independent of S.
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concentrations or rates. Eadie and Hofstee [8] and Hanes and Woolf [9] have
introduced other types of linearization to overcome this limitation.

2.1.3.3 The Michaelis–Menten Equation for Reversible Reactions
In practice, many reactions are reversible. The enzyme may catalyze the reaction in
both directions. Consider the following mechanism:

EþS�! �
k1

k�1
ES�! �

k2

k�2
EþP ð2:25Þ

The product formation is given by

dP
dt
¼ k2ES�k�2E �P ¼ v: ð2:26Þ

The respective rate equation reads

v ¼ Etotal
Sq�P

Sk1=ðk�1k�2Þþ 1=k�2þ k2=ðk�1k�2ÞþP=k�1

¼ ðV
for
max=KmSÞS�ðVback

max =KmPÞP
1þ S=KmSþP=KmP

:

ð2:27Þ

While the parameters k�1 and k�2 are the kinetic constants of the individual reaction
steps, the phenomenological parameters V for

max and V
back
max denote themaximal velocity

in forward or backward direction, respectively, under zero product or substrate
concentration, and the phenomenological parameters KmS and KmP denote the
substrate or product concentration causing half maximal forward or backward rate.
They are related in the following way [10]:

Keq ¼ V for
maxKmP

Vback
max KmS

: ð2:28Þ

2.1.4
Regulation of Enzyme Activity by Effectors

Enzymes may immensely increase the rate of a reaction, but this is not their only
function. Enzymes are involved in metabolic regulation in various ways. Their
production and degradation is often adapted to the current requirements of the
cell. Furthermore, they may be targets of effectors, both inhibitors and activators.
The effectors are small molecules, or proteins, or other compounds that influence

the performance of the enzymatic reaction. The interaction of effector and enzyme
changes the reaction rate. Such regulatory interactions that are crucial for the fine-
tuning of metabolism will be considered here [11].
Basic types of inhibition are distinguished by the state, in which the enzyme may

bind the effector (i.e., the free enzyme E, the enzyme–substrate complex ES, or both),
and by the ability of different complexes to release the product. The general pattern of
inhibition is schematically represented in Figure 2.3. The different types result, if
some of the interactions may not occur.
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The rate equations are derived according to the following scheme:

1. Consider binding equilibriums between compounds and their complexes:

Kmffi k�1
k1
¼E �S

ES
;KI;3¼ k�3

k3
¼E �I

EI
;KI;4¼ k�4

k4
¼ES �I

ESI
;KI;5¼ k�5

k5
¼EI �S

ESI
:

ð2:29Þ

Note that, if all reactionsmay occur, theWegscheider condition [12] holds in the form

k1k4
k�1k�4

¼ k3k5
k�3k�5

; ð2:30Þ

whichmeans that the difference in the free energies between two compounds (e.g., E
and ESI) is independent of the choice of the reaction path (here via ES or via EI).

2. Take into account themoiety conservation for the total enzyme (include only those
complexes, which occur in the course of reaction):

Etotal ¼ EþESþEIþESI: ð2:31Þ
3. The reaction rate is equal to the rate of product formation

v ¼ dP
dt
¼ k2ESþ k6ESI: ð2:32Þ

Equations (2.29)–(2.31) constitute four independent equations for the four unknown
concentrations of E, ES, EI, and ESI. Their solution can be inserted into Eq. (2.32).
The effect of the inhibitor depends on the concentrations of substrate and inhibitor
and on the relative affinities to the enzyme. Table 2.3 lists the different types of
inhibition for irreversible and reversible Michaelis–Menten kinetics together with
the respective rate equations.

ESE+S E+P

k
1 k2

I

k -1

k
3

k-3 k4 k-4

ESIEI+S E+P+I

k
5

k-5

k6

I

Figure 2.3 General scheme of inhibition in Michaelis–Menten
kinetics. Reactions 1 and 2 belong to the standard scheme of
Michaelis–Menten kinetics. Competitive inhibition is given, if in
addition reaction 3 (and not reactions 4, 5, or 6) occurs.
Uncompetitive inhibition involves reactions 1, 2, and 4, and
noncompetitive inhibition comprises reactions 1, 2, 3, 4, and 5.
Occurrence of reaction 6 indicates partial inhibition.
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In the case of competitive inhibition, the inhibitor competeswith the substrate for the
binding site (or inhibits substrate bindingbybindingelsewhere to the enzyme)without
being transformed itself. An example for this type is the inhibition of succinate
dehydrogenase by malonate. The enzyme converts succinate to fumarate forming a
doublebond.Malonatehastwocarboxylgroups, likethepropersubstrates,andmaybind
totheenzyme,buttheformationofadoublebondcannottakeplace.Sincesubstratesand
inhibitorcompeteforthebindingsites,ahighconcentrationofoneofthemmaydisplace
the other one. For very high substrate concentrations, the same maximal velocity as
without inhibitor is reached, but the effective Km value is increased.
In the case of uncompetitive inhibition, the inhibitor binds only to the ES complex.

The reasonmay be that the substrate binding caused a conformational change, which
opened a newbinding site. Since S and I do not compete for binding sites, an increase
in the concentration of S cannot displace the inhibitor. In the presence of inhibitor,
the original maximal rate cannot be reached (lower Vmax). For example, an inhibitor
concentration of I¼KI,4 halves the Km-value as well as Vmax. Uncompetitive inhibi-
tion occurs rarely for one-substrate reactions, but more frequently in the case of two
substrates. One example is inhibition of arylsulphatase by hydracine.
Noncompetitive inhibition is present, if substrate binding to the enzyme does not

alter the binding of the inhibitor. There must be different binding sites for substrate
and inhibitor. In the classical case, the inhibitor has the same affinity to the enzyme
with or without bound substrate. If the affinity changes, this is called mixed
inhibition. A standard example is inhibition of chymotrypsion by Hþ -ions.
If the product may also be formed from the enzyme–substrate–inhibitor complex,

the inhibition is only partial. For high rates of product release (high values of k6), this
can even result in an activating instead of an inhibiting effect.
The general types of inhibition, competitive, uncompetitive, and noncompetitive

inhibition also apply for the reversible Michaelis–Menten mechanism. The respec-
tive rate equations are also listed in Table 2.3.

2.1.4.1 Substrate Inhibition
A common characteristic of enzymatic reaction is the increase of the reaction rate
with increasing substrate concentration S up to the maximal velocity Vmax. But in
some cases, a decrease of the rate above a certain value of S is recorded. A possible
reason is the binding of a further substrate molecule to the enzyme–substrate
complex yielding the complex ESS that cannot forma product. This kind of inhibition
is reversible if the second substrate can be released. The rate equation can be derived
using the scheme of uncompetitive inhibition by replacing the inhibitor by another
substrate. It reads

v ¼ k2ES ¼ VmaxS
KmþSð1þðS=KIÞÞ : ð2:33Þ

This expression has an optimum, i.e., a maximal value of v, at

Sopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KmKI
p

with vopt ¼ Vmax

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km=KI

p : ð2:34Þ
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The dependence of v on S is shown in Figure 2.4. A typical example for substrate
inhibition is the binding of two succinate molecules to malonate dehydrogenase,
which possesses two binding pockets for the carboxyl group. This is schematically
represented in Figure 2.4.

2.1.4.2 Binding of Ligands to Proteins
Every molecule that binds to a protein is a ligand, irrespective of whether it is subject
of a reaction or not. Below we consider binding to monomer and oligomer proteins.
In oligomers, there may be interactions between the binding sites on the subunits.
Consider binding of one ligand (S) to a protein (E ) with only one binding site:

EþSÐ ES ð2:35Þ
The binding constant KB is given by

KB ¼ ES
E � S
� �

eq

: ð2:36Þ

The reciprocal ofKB is the dissociation constantKD. The fractional saturation Yof the
protein is determined by the number of subunits that have bound ligands, divided by
the total number of subunits. The fractional saturation for one subunit is

Y ¼ ES
Etotal

¼ ES
ESþE

¼ KB � S
KB � Sþ 1

: ð2:37Þ

The plot of Y versus S at constant total enzyme concentration is a hyperbola, like the
plot of v versusS in theMichaelis–Menten kinetics (Eq. (2.22)). At a processwhere the
binding of S to E is the first step followed by product release and where the initial
concentration of S is much higher than the initial concentration of E, the rate is
proportional to the concentration of ES and it holds

Figure 2.4 Plot of reaction rate v against
substrate concentration S for an enzyme with
substrate inhibition. The upper curve shows
Michaelis–Menten kinetics without inhibition,
the lower curves show kinetics for the indicated
values of binding constant KI. Parameter values:
Vmax¼ 1, Km¼ 1. The left part visualizes a

possible mechanism for substrate inhibition:
The enzyme (gray item) has two binding pockets
to bind different parts of a substrate molecule
(upper scheme). In case of high substrate
concentration, two different molecules may
enter the binding pockets, thereby preventing the
specific reaction (lower scheme).
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v
Vmax

¼ ES
Etotal

¼ Y : ð2:38Þ

If the protein has several binding sites, then interactions may occur between these
sites, i.e., the affinity to further ligands may change after binding of one or more
ligands. This phenomenon is called cooperativity. Positive or negative cooperativity
denote increase or decrease in the affinity of the protein to a further ligand,
respectively. Homotropic or heterotropic cooperativity denotes that the binding to
a certain ligand influences the affinity of the protein to a further ligand of the same or
another type, respectively.

2.1.4.3 Positive Homotropic Cooperativity and the Hill Equation
Consider a dimeric protein with two identical binding sites. The binding to the first
ligand facilitates the binding to the second ligand.

E2þS �!slow E2S

E2SþS �!fast E2S2
ð2:39Þ

where E is the monomer and E2 is the dimer. The fractional saturation is given by

Y ¼ E2Sþ 2 �E2S2
2 �E2;total

¼ E2Sþ 2 � E2S2
2 �E2þ 2 �E2Sþ 2 �E2S2

: ð2:40Þ

If the affinity to the second ligand is strongly increase by binding to the first ligand,
then E2S will react with S as soon as it is formed and the concentration of E2S can be
neglected. In the case of complete cooperativity, i.e., every protein is either empty or
fully bound, Eq. (2.39) reduces to

E2þ 2S!E2S2 ð2:41Þ
The binding constant reads

KB ¼ E2S2
E2 � S2 ; ð2:42Þ

and the fractional saturation is

Y ¼ 2 �E2S2
2 �E2;total

¼ E2S2
E2þE2S2

¼ KB � S2
1þKB � S2 : ð2:43Þ

Generally, for a protein with n subunits, it holds:

v ¼ Vmax �Y ¼ Vmax �KB � Sn
1þKB � Sn : ð2:44Þ

This is the general form of the Hill equation. To derive it, we assumed complete
homotropic cooperativity. The plot of the fractional saturation Y versus substrate
concentration S is a sigmoid curve with the inflection point at 1/KB. The quantity n
(often �h� is used instead) is termed the Hill coefficient.
The derivation of this expression was based on experimental findings concerning

the binding of oxygen to hemoglobin (Hb) [13, 14]. In 1904, Bohr et al. found that the
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plot of the fractional saturation ofHbwith oxygen against the oxygen partial pressure
had a sigmoid shape.Hill (1913) explained thiswith interactions between the binding
sites located at the Hb subunits [14]. At this time, it was already known that every
subunit Hb binds one molecule of oxygen. Hill assumed complete cooperativity and
predicted an experimental Hill coefficient of 2.8. Today it is known that Hb has four
binding sites, but that the cooperativity is not complete. The sigmoid binding
characteristic has the advantage that Hb binds strongly to oxygen in the lung with
a high oxygen partial pressure while it can release O2 easily in the body with low
oxygen partial pressure.

2.1.4.4 The Monod–Wyman–Changeux Model for Sigmoid Kinetics
The Monod model [15] explains sigmoid enzyme kinetics by taking into account the
interaction of subunits of an enzyme.Wewill show here themain characteristics and
assumptions of this kinetics. The full derivation is given in the web material. It uses
the following assumptions: (i) the enzyme consists of n identical subunits, (ii) each
subunit can assume an active (R) or an inactive (T) conformation, (iii) all subunits
change their conformations at the same time (concerted change), and (iv) the
equilibrium between the R and the Tconformation is given by an allosteric constant

L ¼ T0

R0
: ð2:45Þ

The binding constants for the active and inactive conformations are given by KR and
KT, respectively. If substrate molecules can only bind to the active form, i.e., ifKT¼ 0,
the rate can be expressed as

V ¼ VmaxKRS
ð1þKRSÞ

1
½1þfL=ðð1þKRSÞnÞg� ; ð2:46Þ

where the first factor (VmaxKRS)/(1 þ KRS) corresponds to the Michaelis–Menten
rate expression, while the second factor [1 þ (L/(1 þ KRS)

n)]�1 is a regulatory factor
(Figure 2.5).
For L¼ 0, the plot v versus S is hyperbola as in Michaelis–Menten kinetics. For

L> 0, we obtain a sigmoid curve shifted to the right. A typical value for the allosteric
constant is Lffi 104.
Up to now we considered in the model of Monod, Wyman, and Changeux only

homotropic and positive effects. But this model is also well suited to explain the
dependence of the reaction rate on activators and inhibitors. Activators A bind only to
the active conformation and inhibitors I bind only to the inactive conformation. This
shifts the equilibrium to the respective conformation. Effectively, the binding to
effectors changes L:

L0 ¼ L
ð1þKIIÞn
ð1þKAAÞn ; ð2:47Þ

where KI and KA denote binding constants. The interaction with effectors is a
heterotropic effect. An activator weakens the sigmoidity, while an inhibitor strength-
ens it.
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A typical example for an enzyme with sigmoid kinetics that can be described with
the Monod model is the enzyme phosphofructokinase, which catalyzes the transfor-
mation of fructose-6-phosphate and ATP to fructose-1,6-bisphosphate. AMP, NH4,
and Kþ are activators, ATP is an inhibitor.

2.1.5
Generalized Mass Action Kinetics

Mass action kinetics (see Section 2.1.1) has experienced refinements in different
ways. The fact that experimental results frequently do not show the linear depen-
dence of rate on concentrations as assumed in mass action laws is acknowledged in
power law kinetics used in the S-systems approach [16]. Here, the rate reads

vj
v0j
¼ kj

Yn
i¼1

Si
S0i

� �gj;i

; ð2:48Þ

where the concentrations Si and rates vj are normalized to some standard value
denoted by superscript 0, and gi,j is a real number instead of an integer as in
Eq. (2.4). The normalization yields dimensionless quantities. The power law
kinetics can be considered as a generalization of the mass action rate law. The
exponent gi,j is equal to the concentration elasticities, i.e., the scaled derivatives of
rates with respect to substrate concentrations (see Section 2.3, Eq. (2.107)). Sub-
strates and effectors (their concentrations both denoted by Si) enter expression (2.48)
in the same formal way, but the respective exponents gi,j will be different. The
exponents gi,j will be positive for substrates and activators, but should assume a
negative value for inhibitors.
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Figure 2.5 Model of Monod, Wyman, and
Changeux: Dependence of the reaction rate on
substrate concentration for different values of
the allosteric constant L, according to equation.
The binding constants for the active and inactive
conformations are given by KR and KT,
respectively. If substratemolecules can only bind
to the active form, i.e., if KT¼ 0, the rate can be
expressed as

V ¼ VmaxKRS
ð1þKRSÞ

1
½1þfL=ðð1þKRSÞnÞg�, (2.46).

Parameters: Vmax¼ 1, n¼ 4, KR¼ 2, KT¼ 0. The
value of L is indicated at the curves. Obviously,
increasing value of L causes stronger sigmoidity.
The influence of activators or inhibitors
(compareEq. (2.47)) is illustratedwith the dotted
line for KII¼ 2 and with the dashed line for
KAA¼ 2 (L¼ 104 in both cases).
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2.1.6
Approximate Kinetic Formats

In metabolic modeling studies, approximate kinetic formats are used (for a recent
review, see [17]). They preassume that each reaction rate vj is proportional to the
enzyme concentration Ej. The rates, enzyme concentrations, and substrate concen-
trations are normalized with respect to a reference state, which is usually a steady
state. This leads to the general expression

vj
v0j
¼ Ej

E0
j

� f S

S 0 ; e
0
c

� �
; ð2:49Þ

where ec is the matrix of concentration elasticities as explained in Section 2.3. One
example is the so-called lin-log kinetics

v
v0
¼ E

E 0 Iþ e0c ln
S

S 0

� �
; ð2:50Þ

where I is the r� r identity matrix. Another example is an approximation of the
power-law kinetics

ln
v
v0
¼ ln

E

E 0 þ e0c ln
S

S 0 : ð2:51Þ

Approximative kinetics simplify the determination of model parameters and,
especially, of concentration elasticities, since Eq. (2.51) is a set of linear equations in
the elasticity coefficients.

2.1.7
Convenience Kinetics

The convenience kinetics [18] has been introduced to ease parameter estimation and
to have a kineticmechanism,where all parameters are independent of each other and
not related via the Haldane relation (Eq. (2.28)). It is a generalized form of
Michaelis–Menten kinetics that covers all possible stoichiometries, and describes
enzyme regulation by activators and inhibitors. For a reaction with stoichiometry

n�1S1þ n�2S2þ � � � $ nþ 1P1þ nþ 2P2þ � � � ; ð2:52Þ
it reads

v¼Etotal �freg

� kforcat

Q
iðSi=Km;SiÞn�i�kbackcat

Q
jðPj=Km;Pj ÞnþjQ

ið1þðSi=Km;SiÞþ ��� þðSi=Km;SiÞn�iÞþ
Q

jð1þðPj=Km;Pj Þþ ��� þðPj=Km;Pj Þnþj Þ�1
;

ð2:53Þ
with enzyme concentration Etotal and turnover rates kforcat and kbackcat . The regulatory
prefactor freg is either 1 (in case of no regulation) or a product of termsM/(KAþM) or
1þM/KA for activators and KI/(KIþM) for inhibitors. Activation constants KA and
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inhibition constants KI are measured in concentration units.M is the concentration
of the modifier.
In analogy to Michaelis–Menten kinetics, Km values denote substrate concentra-

tions, at which the reaction rate is half-maximal if the reaction products are absent;KI

and KA values denote concentrations, at which the inhibitor or activator has its half-
maximal effect. In this respect, many parameters in convenience kinetics are
comparable to the kinetic constants measured in enzyme assays. This is important
for parameter estimation (see Section 4.2).
To facilitate thermodynamic independence of the parameters, we introduce new

system parameters that can be varied independently, without violating any thermo-
dynamic constraints (see Section 2.1.1). For each reaction, we define the velocity
constant KV ¼ ðkforcat � kbackcat Þ1=2 (geometric mean of the turnover rates in both direc-
tions). Given the equilibrium and velocity constants, the turnover rates can bewritten
as kforcat ¼ KVðKeqÞ�1=2; kbackcat ¼ KVðKeqÞ1=2. The equilibrium constants Keq can be
expressed by independent parameters such as the Gibbs free energies of formation:
for each substance i, we define the dimensionless energy constant
KG
i ¼ expðGið0Þ=ðRTÞÞ with Boltzmann�s gas constant R¼ 8.314 J (mol�1 K�1) and

absolute temperature T. The equilibrium constants then satisfy lnKeq¼�NTlnKG.

2.2
Structural Analysis of Biochemical Systems

Summary

We discuss basic structural and dynamic properties of biochemical reaction net-
works.We introduce a stoichiometric description of networks and learn howmoieties
and fluxes are balanced within networks.
The basic elements of a metabolic or regulatory network model are

1. the compounds with their concentrations or activities and
2. the reactions or transport processes changing the concentrations or activities of

the compounds.

Inbiologicalenvironments, reactionsareusually catalyzedbyenzymes,andtransport
steps are carried out by transport proteins or pores, thus they can be assigned to
identifiable biochemical compounds. In the following, wewill mainly refer tometabolic
networks. However, the analysis can also be applied to regulatory networks, if different
activity states or complexes of regulatory molecules are considered as individual
compounds that are converted into each other by modifying reactions.

2.2.1
System Equations

Stoichiometric coefficients denote the proportion of substrate and product molecules
involved in a reaction. For example, for the reaction
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S1þ S2 Ð 2P; ð2:54Þ
the stoichiometric coefficients of S1, S2, and P are �1, �1, and 2, respectively. The
assignment of stoichiometric coefficients is not unique. We could also argue that for
the production of one mole P, half a mole of each S1 and S2 have to be used and,
therefore, choose �1/2, �1/2, and 1. Or, if we change the direction of the reaction,
then we may choose 1, 1, and �2.
The change of concentrations in time can be described using ODEs. For the

reaction depicted in Eq. (2.54) and the first choice of stoichiometric coefficients, we
obtain

dS1
dt
¼ �v; dS2

dt
¼ �v; and

dP
dt
¼ 2v: ð2:55Þ

This means that the degradation of S1 with rate v is accompanied by the
degradation of S2 with the same rate and by the production of P with the double
rate.
For a metabolic network consisting of m substances and r reactions, the system

dynamics is described by the system equations (or balance equations, since the balance
of substrate production and degradation is considered) [19, 20]:

dSi
dt
¼
Xr
j¼1

nijvj for i ¼ 1; . . . ;m: ð2:56Þ

The quantities nij are the stoichiometric coefficients of the ith metabolite in the jth
reaction. Here, we assume that the reactions are the only reason for concentration
changes and that no mass flow occurs due to convection or to diffusion. The balance
equations (2.56) can also be applied, if the system consists of several compartments.
In this case, every compound in different compartments has to be considered as an
individual compound and transport steps are formally considered as reactions
transferring the compound belonging to one compartment into the same compound
belonging to the other compartment. In case, volumedifferencesmust be considered
(see Section 3.4).
The stoichiometric coefficients nij assigned to the compounds Si and the reactions

vj can be comprehended into the stoichiometric matrix

N ¼ fnijg for i ¼ 1; . . . ;m and j ¼ 1; . . . ; r; ð2:57Þ

where each column belongs to a reaction and each row to a compound. Table 2.4
shows some examples for reaction networks and their respective stoichiometric
matrices.
Note that all reactions may be reversible. In order to determine the signs is N, the

direction of the arrows is artificially assigned as positive �from left to right� and �from
top down.� If the net flow of a reaction proceeds in the opposite direction as the arrow
indicates, the value of rate v is negative.
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Altogether, the mathematical description of the metabolic system consists of a
vector S¼ (S1, S2, Sn)

Tof concentrations values, a vector v¼ (v1, v2,. . .,vr)
Tof reaction

rates, a parameter vector p¼ (p1, p2, . . ., pm)
T, and the stoichiometric matrix N. If the

system is in steady state, we can also consider the vector J¼ (J1, J2,. . .,Jr)
Tcontaining

the steady-state fluxes. With these notions, the balance equation reads

dS
dt
¼ Nv; ð2:58Þ

a compact form that is suited for various types of analysis.

Table 2.4 Different reaction networks and their stoichiometric matricesa.

Network Stoichiometric matrix

N1 v1 S4 + 2S5S1 + S2 + S3 N ¼

�1
�1
�1
1
2

0
BBBB@

1
CCCCA

N2 53 421 vv vvv S4S3S2S1 N ¼
1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1

0
BB@

1
CCA

N3 S1

v1
v2

v3
N ¼ ð 1 �1 �1 Þ

N4
S1 2S2

v1

v4

v2 v3
S2

S3

N ¼
1 �1 0 �1
0 2 �1 0
0 0 0 1

0
@

1
A

N5 S1

S2

S3v1

v2

v3 S2

S3

N ¼
1 �1 �1
0 �1 1
0 1 �1

0
@

1
A

N6

S1

S S

v1 v2

v3
2 3v4

S4v5

N ¼
1�1 0 0 0
0 0 �1 1 0
0 0 1 �1 0
0 0 0 0 1

0
BB@

1
CCA

aNote that external metabolites are neither drawn in the network nor included in the stoichiometric
matrix. Thin arrows denote reactions, bold arrows denote activation.
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2.2.2
Information Encoded in the Stoichiometric Matrix N

The stoichiometric matrix contains important information about the structure of the
metabolic network.Using the stoichiometricmatrix, wemay calculatewhich combina-
tionsof individualfluxesarepossible insteadystate (i.e., calculate theadmissiblesteady-
statefluxspace).Wemayeasilyfindoutdeadendsandunbranchedreactionpathways.In
addition, we may find out the conservation relations for the included reactants.
In steady state, it holds that

dS
dt
¼ Nv ¼ 0: ð2:59Þ

The right equality sign denotes a linear equation system for determination of the
rates v. From linear algebra, it is known that this equation has nontrivial solutions
only for Rank N< r. A kernel matrix K fulfilling

NK ¼ 0 ð2:60Þ

shows the respective linear dependencies [21]. The choice of the kernel is not unique.
It can be determined using the Gauss Algorithm (see mathematical textbooks). It
contains as columns r–RankN basis vectors. Every possible set J of steady-state fluxes
can be expressed as linear combination of the columns ki of K

J ¼
Xr�Rank N

i¼1
ai � ki: ð2:61Þ

The coefficients must have units corresponding to the units of reaction rates
(M s�1 or mol l�1 s�1).

Example 2.2

For the network N2 in Table 2.4, we have r¼ 5 reactions and RankN¼ 4. The kernel
matrix contains just 1¼ 5� 4 basis vectors, which are multiples of
k ¼ ð 1 1 1 1 1 ÞT. This means that in steady state, the flux through all
reactions must be equal. Network N3 comprises r¼ 3 reactions and has Rank
N¼ 1. Each representation of the kernel matrix contains 3� 1¼ 2 basis vectors, e.g.,

K ¼ ð k1 k2 Þ with k1 ¼
1
�1
0

0
@

1
A; k2 ¼

1
0
1

0
@

1
A; ð2:62Þ

and for the steady-state flux holds

J ¼ a1 � k1þa2 � k2: ð2:63Þ
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Network N6 can present a small signaling cascade. It has five reactions and Rank
N¼ 3. The resulting two basis vectors of the kernel are linear combinations of

k1 ¼ ð 1 1 0 0 0 ÞT; k2 ¼ ð 0 0 1 1 0 ÞT: ð2:64Þ
If we calculate the possible steady-state fluxes according to Eq. (2.63), we can easily
see that in every steady state, it holds that production and degradation of S1 are
balanced ( J1¼ J2) and that the fluxes through the cycle are equal ( J3¼ J4). In
addition, J5 must be equal to zero, otherwise S4 would accumulate. One could
prevent the last effect by also including the degradation of S4 into the network.

If the entries in a certain row are zero in all basis vectors, we have found an
equilibrium reaction. In any steady state, the net rate of this reaction must be zero.
For the reaction system N4 in Table 2.4, it holds that r¼ 4 and RankN¼ 3. Its kernel
consists of only one column K ¼ ð 1 1 1 0 ÞT. Hence, v4 ¼

P1
i¼1 a � 0 ¼ 0. In

any steady state, the rates of production and degradation of S3 must equal.
If all basis vectors contain the same entries for a set of rows, this indicates an

unbranched reaction path. In each steady state, the net rate of all respective reactions
is equal.

Example 2.3

Consider the reaction scheme

ð2:65ÞS S S
v1 v2 v3 v4

v6

1 2 3

v5

The system comprises r¼ 6 reactions. The stoichiometric matrix reads

N ¼
1 �1 0 0 �1 0
0 1 �1 0 0 0
0 0 1 �1 0 1

0
@

1
A

with Rank N¼ 3. Thus, the kernel matrix is spanned by three basis vectors, for
example, k1 ¼ ð 1 1 1 0 0 �1 ÞT, k2 ¼ ð 1 0 0 0 1 0 ÞT, and
k3 ¼ ð�1 �1 �1 �1 0 0 ÞT. The entries for the second and third reac-
tions are always equal, thus in any steady state, the fluxes through reactions 2 and
3 must be equal.

Up to now, we have not been concerned about (ir)reversibility of reactions in the
network. If a certain reaction is considered irreversible, this has no consequences
for the stoichiometric matrix N but rather for the kernel K. The set of vectors
belonging to K is restricted by the condition that some values may not become
negative (or positive – depending on the definition of flux direction).
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2.2.3
Elementary Flux Modes and Extreme Pathways

The definition of the term �pathway� in a metabolic network is not straightfor-
ward. A descriptive definition of a pathway is a set of subsequent reactions that
are linked by common metabolites. Typical examples include glycolysis or
different amino acid synthesis pathways. More detailed inspection of metabolic
maps like the Boehringer Chart [22] shows that metabolism is highly intercon-
nected. Pathways that are known for a long time from biochemical experience are
already hard to recognize, and it is even harder to find out new pathways, for
example in metabolic maps that have been reconstructed from sequenced
genomes of bacteria.
This problem has been elaborated in the concept of elementary flux modes [21,

23–27]. Here, the stoichiometry of a metabolic network is investigated to find out
which direct routes are possible that lead from one external metabolite to another
external metabolite. The approach takes into account that some reactions are
reversible, while others are irreversible.
A flux mode M is set of flux vectors that represent such direct routes through the

metabolic networks. In mathematical terms, it is defined as the set

M ¼ fv 2 Rr jv ¼ lv	; l > 0g; ð2:66Þ

where v	 is an r-dimensional vector (unequal to the null vector) fulfilling two
conditions: (i) steady state, i.e., Eq. (2.59), and (ii) sign restriction, i.e., the flux
directions in v	 fulfill the prescribed irreversibility relations.
AfluxmodeM comprising v is called reversible if the setM0 comprising�v is also a

fluxmode.Afluxmode is an elementaryfluxmode if it uses aminimal set of reactions
and cannot be further decomposed, i.e., the vector v cannot be represented as
nonnegative linear combination of two vectors that fulfill conditions (i) and (ii) but
contain more zero entries than v. An elementary flux mode is a minimal set of
enzymes that could operate at steady state, with all the irreversible reactions used in
the appropriate direction. The number of elementary fluxmodes is at least as high as
the number of basis vectors of the null space.

Example 2.4

The systems (A) and (B) differ by the (ir)reversibility of reaction 2.

v v v v v v(A) (B)
S1 S2 S2

S4

v1 v2 v3

v4

S0 S3 S1

S4

v1 v2 v3

v4

S0 S3

ð2:67Þ
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The elementary flux modes connect the external metabolites S0 and S3, S0 and S4, or
S3 and S4. The stoichiometricmatrix and the fluxmodes read for case (A) and case (B)

N¼ 1 �1 0 �1
0 1 �1 0

� �
; vA¼

1

1

1

0

0
BBB@
1
CCCA;

1

0

0

1

0
BBB@
1
CCCA;

0

�1
�1
1

0
BBB@

1
CCCA;

�1
�1
�1
0

0
BBB@

1
CCCA;

�1
0

0

�1

0
BBB@

1
CCCA;

0

1

1

�1

0
BBB@

1
CCCA;

and vB¼

1

1

1

0

0
BBB@
1
CCCA;

1

0

0

1

0
BBB@
1
CCCA;

�1
0

0

�1

0
BBB@

1
CCCA;

0

1

1

�1

0
BBB@

1
CCCA:

ð2:68Þ
The possible routes are illustrated in Figure 2.6.

2.2.3.1 Flux Cone
The stoichiometric analysis of biochemical network analysis can be modified by
considering only irreversible reactions (e.g., by splitting reversible reactions into two
irreversible ones). Based on such a unidirectional representation, the basis vectors
(Eq. (2.61)) form a convex cone in the flux space. Thismapping relates stoichiometric
analysis to the concepts of convex geometry as follows. The steady-state assumption
requires that aflux vector is an element of the null space of the stoichiometrymatrixN
spanned bymatrixK. A row ofK can be interpreted as a hyperplane in flux space. The
intersection of all these hyperplanes forms the null space. From thermodynamic

Elementary  Flux Modes

S0 S1 S2 S3

v1 v2 v3

v4

S4

v1 v2 v3

S0 S1 S2 S3

S4

1 2 3

v4

Figure 2.6 Schematic representation of elementary flux
modes for the reaction network depicted in Eq. (2.67).
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considerations, some of the reactions can be assumed to proceed only in one
direction so that the backward reaction can be neglected. Provided that all reactions
are unidirectional or irreversible, the intersection of the null space with the
semipositive orthant of the flux space forms a polyhedral cone, the flux cone. The
intersection procedure results in a set of rays or edges starting at 0, which fully
describe the cone. The edges are represented by vectors and any admissible steady
state of the system is a positive combination of these vectors. An illustration is
presented in Figure 2.7.
The set of elementaryfluxmodes is uniquely defined. Pfeiffer et al. [23] developed a

software (�Metatool�) to calculate the elementary fluxmodes for metabolic networks.
The concept of extreme pathways [28–30] is analogous to the concept of elementary
flux modes, but here all reactions are constrained by flux directionality, while the
concept of elementary flux modes allows for reversible reactions. To achieve this,
reversible reactions are broken down into their forward and backward components.
This way, the set of extreme pathways is a subset of the set of elementary flux modes
and the extreme pathways are systemically independent.
Elementary fluxmodes and extreme pathways can be used to understand the range

of metabolic pathways in a network, to test a set of enzymes for production of a
desired product and detect nonredundant pathways, to reconstructmetabolism from
annotated genome sequences and analyze the effect of enzyme deficiency, to reduce
drug effects, and to identify drug targets. A specific application, the flux balance
analysis, will be explained in Section 8.1.

Figure 2.7 Flux cone: schematic representation
of the subspace of feasible steady states within
the space spanned by all positive-valued vectors
for rates of irreversible reactions, vi, i¼ 1, . . ., r.
Only three dimensions are shown. Feasible
solutions are linear combinations of basis
vectors of matrix K (see text). (a) Illustrative
representation of the flux cone for a higher
dimensional system (with r–Rank (N)¼ 4)). The
basis vectors of K are rays starting at the origin.
The line connecting the four rays indicates

possible limits for real flux distributions set by
constraints. The little star indicates one special
feasible solution for the fluxes. (b) The flux
cone for an unbranched reaction chain of
arbitrary length, such as the network N2 in
Table 2.4, is just a ray since K is represented by
a single basis vector containing only 1s. (c) The
flux cone for network N3 in Table 2.4 is the
plane spanned by the basis vectors
k1 ¼ ð 1 1 0 ÞT; k2 ¼ ð 1 0 1 ÞT.
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2.2.4
Conservation Relations: Null Space of NT

If a substance is neither added to nor removed from the reaction system (neither
produced nor degraded), its total concentration remains constant. This also holds if
the substance interacts with other compounds by forming complexes. We have seen
already as an example the constancy of the total enzyme concentration (Eq. (2.19))
when deriving the Michaelis–Menten rate equation. This was based on the assump-
tion that enzyme production and degradation takes place on a much faster timescale
than the catalyzed reaction.
For the mathematical derivation of the conservation relations [21], we consider a

matrix G fulfilling

GN ¼ 0: ð2:69Þ

Due to Eq. (2.58), it follows

G _S ¼ GNv ¼ 0: ð2:70Þ

Integrating this equation leads directly to the conservation relations

GS ¼ constant: ð2:71Þ

Thenumber of independent rows ofG is equal ton–RankN, wheren is thenumber
of metabolites in the system. GT is the kernel matrix of NT, hence it has similar
properties as K. Matrix G can also be found using the Gauss algorithm. It is not
unique, but every linear combination of its rows is again a valid solution. There is a
simplest representation G ¼ ðG0 In�Rank N Þ. Finding this representation may be
helpful for a simple statement of conservation relations, but this may necessitate
renumbering and reordering of metabolite concentrations (see below).

Example 2.5

Consider a set of two reactions comprising a kinase and a phosphatase reaction

ATP ADP
v1

v2

ð2:72Þ

The metabolite concentration vector reads S ¼ ðATP ADP ÞT, the stoichiometric

matrix is N ¼ �1 1
1 �1

� �
yielding G ¼ ð 1 1 Þ. From the condition GS¼ con-

stant, it follows ATP þ ADP¼ constant. Thus, we have a conservation of adenine

2.2 Structural Analysis of Biochemical Systems j39



nucleotides in this system. The actual values of ATP þ ADP must be determined
from the initial conditions.

Example 2.6

For the followingmodel of the upper part of glycolysis

ð2:73Þ
v1 v2 v3

Fruc-6PGluc-6PGlucose Fruc-1,6P2

ATP  ADPATP  ADP
(S1) (S2) (S3 (S4))

(S5) (S6) (S5) (S6)

the stoichiometric matrixN (note the transpose!) and a possible representation of
the conservation matrix G are given by

NT¼
�1 1 0 0 �1 1
0 �1 1 0 0 0
0 0 �1 1 �1 1

0
@

1
A and G¼

2 1 1 0 0 1
0 0 0 0 1 1
1 1 1 1 0 0

0
@

1
A¼ g1

g2
g3

0
@

1
A:

ð2:74Þ
The interpretation of the second and third row is straightforward, showing the
conservation of adenine nucleotides (g2, ADP þ ATP¼ constant) and the conser-
vationofsugars(g3), respectively.Theinterpretationof thefirst rowis less intuitive. If
we construct the linear combination g4¼�g1þ3 �g2þ2 �g3¼ð0 1 1 2 3 2Þ, we
find the conservation of phosphate groups.

Importantly, conservation relations can be used to simplify the system of differ-
ential equations _S ¼ Nv describing the dynamics of our reaction system. The idea is
to eliminate linear dependent differential equations and to replace them by appro-
priate algebraic equations. Below the procedure is explained systematically [20].
First we have to rearrange the rows in the stoichiometric matrixN as well as in the

concentration vector S such that a set of independent rows is on top and the
dependent rows are at the bottom. Then the matrix N is split into the independent
part NR and the dependent part N 0 and a link matrix L is introduced in the following
way:

N ¼ NR

N 0

� �
¼ LNR ¼ IRank N

L0

� �
NR: ð2:75Þ

IRank N is the identity matrix of size RankN. The differential equation systemmay be
rewritten accordingly

_S ¼
_Sindep
_Sdep

� �
¼ IRank N

L0

� �
NRv; ð2:76Þ
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and the dependent concentrations fulfil

_Sdep ¼ L0 � _Sindep: ð2:77Þ

Integration leads to

Sdep ¼ L0 � Sindepþ constant: ð2:78Þ

This relation is fulfilled during the entire time course. Thus, we may replace the
original system by a reduced differential equation system

_Sindep ¼ NRv; ð2:79Þ

supplemented with the set of algebraic equations (2.78).

Example 2.7

For the reaction system,

ð2:80ÞS1 S2

v1 v2 v3

S3 S4
v4

the stoichiometric matrix, the reduced stoichiometric matrix, and the link matrix
read

N ¼
1�1 0 0
0 1�1 0
0�1 0 1
0 1 0�1

0
BB@

1
CCA; NR ¼

1�1 0 0
0 1 �1 0
0 �1 0 1

0
@

1
A;

L ¼
1 0 0
0 1 0
0 0 1
0 0�1

0
BB@

1
CCA; L0 ¼ ð 0 0 �1 Þ

The conservation relation S3 þ S4¼ constant is expressed byG ¼ ð 0 0 1 1 Þ.
The ODE system

_S1 ¼ v1�v2
_S2 ¼ v2�v3
_S3 ¼ v4�v2
_S4 ¼ v2�v4
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can be replaced by the differential-algebraic system

_S1 ¼ v1�v2
_S2 ¼ v2�v3
_S3 ¼ v4�v2
S3þ S4 ¼ constant

;

which has one differential equation less.

Eukaryotic cells contain a variety of organelles like nucleus, mitochondria, or
vacuoles, which are separated by membranes. Reaction pathways may cross the
compartment boundaries. If a substance S occurs in two different compartments,
e.g., in the cytosol and inmitochondria, the respective concentrations canbe assigned
to two different variables, SC1 and SC2. Formally, the transport across the membrane
can be considered as a reaction with rate v. It is important to note that both
compartments have different volumes VC1 and VC2. Thus, transport of a certain
amount of S with rate v from compartmentC1 into the compartmentC2 changes the
concentrations differently:

VC1 � d
dt
SC1 ¼ �v and VC2 � d

dt
SC2 ¼ v; ð2:81Þ

where V � S denotes substance amount in moles. Compartmental models are dis-
cussed in more detail in Section 3.4.

2.3
Kinetic Models of Biochemical Systems

Summary

An important problem in the modeling of biological systems is to characterize the
dependence of certain properties on time and space. One frequently applied strategy
is the description of the change of state variables by differential equations. If only
temporal changes are considered, ODEs are used. For changes in time and space,
partial differential equations (PDEs) are appropriate. In this chapter, we will deal with
the solution, analysis, a numerical integration of ODEs, and with basic concepts of
dynamical systems theory as state space, trajectory, steady states, and stability.

2.3.1
Describing Dynamics with ODEs

The time behavior of biological systems in a deterministic approach can be described
by a set of differential equations

dxi
dt
¼ _xi ¼ fiðx1; . . . ; xn; p1; . . . ; pl; tÞ i ¼ 1; . . . ; n; ð2:82Þ
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where xi are the variables, e.g., concentrations, and pj are the parameters, e.g.,
enzyme concentrations or kinetic constants, and t is the time.Wewill use the notions
dx/dt and _x interchangeably. In vector notation, Eq. (2.82) reads

d
dt
x ¼ _x ¼ f ðx; p; tÞ; ð2:83Þ

with x¼ (x1,. . ., xn)
T, f¼ (f1,. . ., fn)

T, and p¼ (p1,. . ., pl)
T. For biochemical reaction

systems, the functions fi are frequently given by the contribution of producing and
degrading reactions as described for the balance equations in Section 1.2.

2.3.1.1 Notations
ODEs depend on one variable (e.g., time t). Otherwise, they are called PDEs. PDEs are
not considered here.
An implicit ODE

Fðt; x; x0; . . . ; xðnÞÞ ¼ 0 ð2:84Þ
includes the variable t, the unknown function x, and its derivatives up to nth order. An
explicit ODE of nth order has the form

xðnÞ ¼ f ðt; x; x0; . . . ; xðn�1ÞÞ: ð2:85Þ
The highest derivative (here n) determines the order of the ODE.
Studying the time behavior of our system, we may be interested in finding

solutions of the ODE, i.e., finding an n times differentiable function x fulfilling
Eq. (2.85). Such a solution may depend on parameters, so-called integration con-
stants, and represents a set of curves. A solution of anODEof nth order depending on
n integration parameters is a general solution. Specifying the integration constants,
for example, by specifying n initial conditions (for n¼ 1: x(t¼ 0)¼ x0) leads to a
special or particular solution.
We will not show here all possibilities of solving ODEs, instead we will focus on

some cases relevant for the following chapters.
If the right-hand sides of the ODEs are not explicitly dependent on time

t ( _x ¼ f ðx; pÞ), the system is called autonomous. Otherwise it is nonautonomous.
This case will not be considered here.
The system state is a snapshot of the system at a given time that contains

enough information to predict the behavior of the system for all future times. The
state of the system is described by the set of variables. The set of all possible states
is the state space. The number n of independent variables is equal to the
dimension of the state space. For n¼ 2, the two-dimensional state space can be
called phase plane.
A particular solution of the ODE system _x ¼ f ðx; p; tÞ, determined from the

general solution by specifying parameter values p and initial conditions
xðt0Þ ¼ x0, describes a path through the state space and is called trajectory.
Stationary states or steady states are points �x in the phase plane, where the

condition _x ¼ 0ð _x1 ¼ 0; . . . ; _xn ¼ 0Þ is met. At steady state, the system of n differ-
ential equations is represented by a system of n algebraic equations for n variables.
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The equation system _x ¼ 0 can have multiple solutions referring to multiple steady
states. The change of number or stability of steady states upon changes of parameter
values p is called a bifurcation.
Linear systems of ODEs have linear functions of the variables as right-hand sides,

such as

dx1
dt
¼ a11x1þ a12x2þ z1

dx2
dt
¼ a21x1þ a22x2þ z2

; ð2:86Þ

or in general _x ¼ Axþ z. The matrix A¼ {aik} is the system matrix containing the
system coefficients aik¼ aik(p) and the vector z¼ (z1, . . ., Zn)

T contains inhomoge-
neities. The linear system is homogeneous if z¼ 0 holds. Linear systems can be solved
analytically. Although in real-world problems, the functions are usually nonlinear,
linear systems are important as linear approximations in the investigation of steady
states.

Example 2.8

The simple linear system

dx1
dt
¼ a12x2;

dx2
dt
¼ �x1 ð2:87Þ

has the general solution

x1 ¼ 1
2
e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC1� 1
2
ie�i

ffiffiffiffiffi
a12
p

tð�1þ e2i
ffiffiffiffiffi
a12
p

tÞ ffiffiffiffiffiffia12
p

C2

x2 ¼ i
2
ffiffiffiffiffiffi
a12
p e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC1þ 1
2
e�i

ffiffiffiffiffi
a12
p

tð1þ e2i
ffiffiffiffiffi
a12
p

tÞC2

with the integration constantsC1 andC2. Choosing a12¼ 1 simplifies the system to
x1¼C1 cost þ C2 sint and x2¼C2 cost�C1sint. Specification of the initial con-
ditions to x1(0)¼ 2, x2 (0)¼ 1 gives the particular solution x1¼ 2 cost þ sint and
x2¼ cost� 2sint. The solution can be presented in the phase plane or directly as
functions of time (Figure 2.8).

2.3.1.2 Linearization of Autonomous Systems
In order to investigate the behavior of a system close to steady state, itmay be useful to
linearize it. Considering the deviation x̂ðtÞ from steady state with xðtÞ ¼ �xþ x̂ðtÞ, it
follows

_x ¼ f ð�xþ x̂ðtÞÞ ¼ d
dt
ð�xþ x̂ðtÞÞ ¼ d

dt
x̂ðtÞ: ð2:88Þ
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Taylor expansion of the temporal change of the deviation, ðd=dtÞx̂i ¼
fið�x1þ x̂1; . . . ; �xnþ x̂nÞ, gives

d
dt
x̂i ¼ fið�x1; . . . ; �xnÞþ

Xn
j¼1

qfi
qxj

x̂j þ 1
2

Xn
j¼1

Xn
k¼1

q2fi
qxjqxk

x̂jx̂kþ � � � : ð2:89Þ

Since we consider steady state, it holds fið�x1; . . . ; �xnÞ ¼ 0. Neglecting terms of
higher order, we have

d
dt
x̂i ¼

Xn
j¼1

qfi
qxj

x̂j ¼
Xn
j¼1

aijx̂j: ð2:90Þ

The coefficients aij¼ qfi/qxj are calculated at steady state and are constant. They
form the so-called Jacobian matrix:

J ¼ aij
� � ¼

qf1
qx1

qf1
qx2

. . .
qf1
qxn

qf2
qx1

qf2
qx2

. . .
qf2
qxn

..

. ..
. . .

. ..
.

qfn
qx1

qfn
qx2

. . .
qfn
qxn

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:91Þ

For linear systems, it holds J¼A.

2.3.1.3 Solution of Linear ODE Systems
We are interested in two different types of problems: describing the temporal
evolution of the system and finding its steady state. The problem of finding the
steady state �x of a linear ODE system, _x ¼ 0, implies solution of A�xþ z ¼ 0. The
problem can be solved by inversion of the system matrix A:

�x ¼ �A�1z: ð2:92Þ

Phase planeTime course(a) (b)
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1

Time, a.u. x1

Figure 2.8 Phase plane and time course for the linear system of
ODEs represented in Eq. (2.87). In time course panel: gray line
x1(t), black line x2(t). Parameters: a12¼ 1, x1(0)¼ 1, x2(0)¼ 2.
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The time course solution of homogeneous linear ODEs is described in the following.
The systems can be solved with an exponential function as ansatz. In the simplest
case n¼ 1, we have

dx1
dt
¼ a11x1: ð2:93Þ

Introducing the ansatz x1(t)¼ b1e
lt with constant b1 into Eq. (2.93) yields b1lelt¼

a11b1e
lt, which is true, if l¼ a11. This leads to the general solution x1(t)¼ b1e

a11t. To
find a particular solution, we must specify the initial conditions x1ðt ¼ 0Þ ¼
xð0Þ1 ¼ b1ea11tjt¼0 ¼ b1. Thus, the solution is

x1ðtÞ ¼ xð0Þ1 ea11t: ð2:94Þ
For a linear homogeneous systemof n differential equations, _x ¼ Ax, the approach is
x¼ belt. This gives _x ¼ blelt ¼ Abelt. The scalar factor elt can be cancelled out,
leading to bl¼Ab or the characteristic equation

ðA�lInÞb ¼ 0: ð2:95Þ
For homogeneous linear ODE systems, the superposition principle holds: if x1 and x2
are solutions of this ODE system, then also their linear combination is a solution.
This leads to the general solution of the homogeneous linear ODE system:

xðtÞ ¼
Xn
i¼1

cib
ðiÞeli t; ð2:96Þ

where b(i) is the eigenvectors of the systemmatrixA corresponding to the eigenvalues
li. A particular solution specifying the coefficients ci can be found considering the
initial conditions xðt ¼ 0Þ ¼ xð0Þ ¼Pn

j¼1 cib
ðiÞ. This constitutes an inhomogeneous

linear equation system to be solved for ci.
For the solution of inhomogeneous linear ODEs, the system _x ¼ Axþ z can be

transformed into a homogeneous system by the coordination transformation
x̂ ¼ x��x. Since ðd=dtÞ�x ¼ A�xþ z ¼ 0, it holds ðd=dtÞx̂ ¼ Ax̂. Therefore, we can
use the solution algorithm for homogeneous systems for the transformed system.

2.3.1.4 Stability of Steady States
If a system is at steady state, it should stay there – until an external perturbation
occurs. Depending on the system behavior after perturbation, steady states are either

. stable – the system returns to this state

. unstable – the system leaves this state

. metastable – the system behavior is indifferent

A steady state is asymptotically stable, if it is stable and solutions based on nearby
initial conditions tend to this state for t ! ¥. Local stability describes the behavior
after small perturbations, global stability after any perturbation.
To investigate, whether a steady state �x of the ODE system _x ¼ f ðxÞ is asymptoti-

cally stable, we consider the linearized system dx̂=dt ¼ Ax̂ with x̂ðtÞ ¼ xðtÞ��x. The
steady state �x is asymptotically stable, if the JacobianA has n eigenvalues with strictly
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negative real parts each. The steady state is unstable, if at least one eigenvalue has a
positive real part. This will now be explained in more detail for 1- and 2D systems.
We start with 1D systems, i.e., n¼ 1, and assume without loss of generality �x1 ¼ 0.

The system _x1 ¼ f1ðx1Þ yields the linearized system _x1 ¼ ðqf1=qx1Þj�x1x1 ¼ a11x1. The
Jacobian matrix A¼ {a11} has only one eigenvalue l1¼ a11. The solution is
x1ðtÞ ¼ xð0Þ1 el1t. It is obvious that el1t increases for l1> 0 and the system runs away
from the steady state. For l1< 0, the deviation from steady state decreases and
x1ðtÞ! �x1 for t ! ¥. For l1¼ 0, consideration of the linearized system allows no
conclusion about stability of the original system because higher order terms in
Eq. (2.89) play a role.
Consider the 2D case, n¼ 2. For the general (linear or nonlinear) system

_x1 ¼ f1ðx1; x2Þ
_x2 ¼ f2ðx1; x2Þ

; ð2:97Þ

we can compute the linearized system

_x1 ¼ qf1
qx1

����
�x

x1þ qf1
qx2

����
�x

x2

_x2 ¼ qf2
qx1

����
�x

x1þ qf2
qx2

����
�x

x2

or _x ¼
qf1
qx1

����
�x

qf1
qx2

����
�x

qf2
qx1

����
�x

qf2
qx2

����
�x

0
BBB@

1
CCCAx ¼ a11 a12

a21 a22

� �
x ¼ Ax:

ð2:98Þ

To find the eigenvalues of A, we have to solve the characteristic polynomial

l2�ða11þ a22Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Tr A

lþ a11a22�a12a21|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Det A

¼ 0; ð2:99Þ

with Tr A the trace and Det A the determinant of A, and get

l1=2 ¼ TrA
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr AÞ2

4
�Det A

s
: ð2:100Þ

The eigenvalues are either real for (Tr A)2/4�Det A
 0 or complex (otherwise).
For complex eigenvalues, the solution contains oscillatory parts.
For stability, it is necessary that Tr A< 0 and Det A
 0. Depending on the sign

of the eigenvalues, steady states of a 2D system may have the following
characteristics:

1. l1< 0, l2< 0, both real: stable node
2. l1> 0, l2> 0, both real: unstable node
3. l1> 0, l2< 0, both real: saddle point, unstable
4. Re(l1)< 0, Re(l2)< 0, both complex with negative real parts: stable focus
5. Re(l1)> 0, Re(l2)> 0, both complex with positive real parts: unstable focus
6. Re(l1)¼Re(l2)¼ 0, both complex with zero real parts: center, unstable.
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Graphical representation of stability depending on trace and determinant is given
in Figure 2.9.
Up to now, we considered only the linearized system. For the stability of the

original system, the following holds. If the steady state of the linearized system is
asymptotically stable, then the steady state of the complete system is also asymptoti-
cally stable. If the steady state of the linearized system is a saddle point, an unstable
node or an unstable focus, then the steady state of the complete system is also
unstable. This means that statements about the stability remain true, but the
character of the steady state is not necessarily kept. For the center, no statement
on the stability of the complete system is possible.

Routh–Hurwitz Theorem [31] For systems with n> 2 differential equations, we
obtain the characteristic polynomial

cnl
nþ cn�1l

n�1þ � � � þ c1lþ c0 ¼ 0: ð2:101Þ
This is a polynomial of degree n, which frequently cannot be solved analytically (at

least for n> 4). We can use the Hurwitz criterion to test whether the real parts of all
eigenvalues are negative. We have to form the Hurwitz matrix H, containing the
coefficients of the characteristic polynomial:

Tr A

4Det A= (Tr A)2

λ1 > 0, λ2 > 0, real: 

λ1 > 0, λ2 < 0, real: 

unstable node

unstable saddle
Re(λ1) > 0, Re( λ 2) > 0, complex: 
unstable focus

Det A

λ1 > 0, λ2 < 0, real: Re( complex:

Re(λ1)=Re(λ2)= 0,
complex: center

unstable saddle
Re(λ1) < 0, λ2) < 0,
stable focus

λ1 < 0,λ2 < 0, real: 
stable node

Figure 2.9 Stability of steady states in two-dimensional systems:
the character of steady-state solutions is represented depending
on the value of the determinant (x-axis) and the trace (y-axis) of the
Jacobian matrix. Phase plane behavior of trajectories in the
different cases is schematically represented.
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H¼

cn�1 cn�3 cn�5 ... 0
cn cn�2 cn�4 ... 0
0 cn�1 cn�3 ... 0
0 cn cn�2 ... 0

..

. ..
. ..

. . .
. ..

.

0 0 0 ... c0

0
BBBBBBBB@

1
CCCCCCCCA
¼fhikg with hik¼

cnþi�2k; if 0�2k�i�n

0; else
:

�

ð2:102Þ
It has been shown that all solutions of the characteristic polynomial have negative

real parts, if all coefficients ci of the polynomial as well as all principal leadingminors
of H have positive values.

2.3.1.5 Global Stability of Steady States
A state is globally stable, if the trajectories for all initial conditions approach it for
t ! ¥. The stability of a steady state of an ODE system can be tested with a method
proposed by Lyapunov:

Shift the steady state into the point of origin by coordination transformation
x̂ ¼ x��x.
Find a function VL(x1, . . ., xn), called Lyapunov function, with the following
properties:

(1) VL(x1, . . ., xn) has continuous derivatives with respect to all variables xi.
(2) VL(x1, . . ., xn) satisfiesVL(x1, . . ., xn)¼ 0 for xi¼ 0 and is positive definite

elsewhere, i.e., VL(x1, . . ., xn)> 0 for xi 6¼ 0.
(3) The time derivative of VL(x(t)) is given by

dVL

dt
¼
Xn
i¼1

qVL

qxi

dxi
dt
¼
Xn
i¼1

qVL

qxi
fiðx1; . . . ; xnÞ: ð2:103Þ

A steady state �x ¼ 0 is stable, if the time derivative of VL (x(t)) in a certain region
around this state has no positive values. The steady state is asymptotically stable, if the
time derivative ofVL (x(t)) in this region is negative definite, i.e., dVL/dt¼ 0 for xi¼ 0
and dVL/dt< 0 for xi 6¼ 0.

Example 2.9

The system _x1 ¼ �x1; _x2 ¼ �x2 has the solution x1ðtÞ ¼ xð0Þ1 e�t; x2ðtÞ ¼ xð0Þ2 e�t and
the state x1¼ x2¼ 0 is asymptotically stable.
Theglobalstabilitycanalsobeshownusingthepositivedefinite functionVL ¼ x21 þ x22

as Lyapunov function. It holds dVL=dt ¼ ðqVL=qx1Þ _x1þðqVL=qx2Þ _x2 ¼ 2x1ð�x1Þ
þ 2x2ð�x2Þ, which is negative definite.

2.3.1.6 Limit Cycles
Oscillatory behavior is a typical phenomenon in biology. The cause of the oscillation
may be different either imposed by external influences or encoded by internal
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structures and parameters. Internally caused stable oscillations can be found if we
have a limit cycle in the phase space.
A limit cycle is an isolated closed trajectory. All trajectories in its vicinity are periodic

solutions winding toward (stable limit cycle) or away from (unstable) the limit cycle
for t ! ¥.

Example 2.10

The nonlinear system _x1 ¼ x21 x2�x1; _x2 ¼ p�x21x2 has a steady state at
�x1 ¼ p; �x2 ¼ 1=p. If we choose, e.g., p¼ 0.98, this steady state is unstable since
Tr A¼ 1� p2> 0 (Figure 2.10).

For 2D systems, there are two criteria to check whether a limit cycle exists.
Consider the system of differential equations

_x1 ¼ f1ðx1; x2Þ
_x2 ¼ f2ðx1; x2Þ : ð2:104Þ

The negative criterion of Bendixson states: if the expression TrA¼ qf1/qx1 þ qf2/qx2
does not change its sign in a certain region of the phase plane, then there is no closed
trajectory in this area.Hence, a necessary condition for the existence of a limit cycle is
the change of the sign of Tr A.

Example 2.11

Example 2.10 holds TrA ¼ ð2x1x2�1Þþ ð�x21 Þ. Therefore, Tr A ¼ 0 is fulfilled at
x2 ¼ ðx21 þ 1Þ=ð2x1Þ and TrAmay assumepositive or negative values for varying x1, x2,
and the necessary condition for the existence of a limit cycle is met.

2 2.x
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Figure 2.10 Solution of the Equation system in Example 2.10
represented as time course (left panel) and in phase plane (right
panel). Initial conditions x1(0)¼ 2, x2(0)¼ 1.
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The criterion of Poincar�e–Bendixson states: if a trajectory in the 2D phase plane
remains within a finite region without approaching a singular point (a steady
state), then this trajectory is either a limit cycle or it approaches a limit cycle. This
criterion provides a sufficient condition for the existence of a limit cycle.
Nevertheless, the limit cycle trajectory can be computed analytically only in very
rare cases.

2.3.2
Metabolic Control Analysis

Metabolic control analysis (MCA) is a powerful quantitative and qualitative frame-
work for studying the relationship between steady-state properties of a network of
biochemical reaction and the properties of the individual reactions. It investigates the
sensitivity of steady-state properties of the network to small parameter changes.MCA
is a useful tool for theoretical and experimental analysis of control and regulation in
cellular systems.
MCAwas independently founded by two different groups in the 1970s [32, 33] and

was further developed by many different groups upon the application to different
metabolic systems. A milestone in its formalization was provided by Reder [20].
Originally intended for metabolic networks, MCA has nowadays found applications
also for signaling pathways, gene expression models, and hierarchical networks
[34–38].
Metabolic networks are very complex systems that are highly regulated and exhibit

a lot of interactions such as feedback inhibition or common substrates such as ATP
for different reactions. Many mechanisms and regulatory properties of isolated
enzymatic reactions are known. The development of MCAwas motivated by a series
of questions like the following: Can one predict properties or behavior of metabolic
networks from the knowledge about their parts, the isolated reactions? Which
individual steps control a flux or a steady-state concentration? Is there a rate-limiting
step? Which effectors or modifications have the most prominent effect on the
reaction rate? In biotechnological production processes, it is of interest which
enzyme(s) should be activated in order to increase the rate of synthesis of a desired
metabolite. There are also related problems in health care. Concerning metabolic
disorders involving overproduction of a metabolite, which reactions should be
modified in order to down-regulate this metabolite while perturbing the rest of the
metabolism as weakly as possible?
Inmetabolic networks, the steady-state variables, i.e., the fluxes and themetabolite

concentrations, depend on the value of parameters such as enzyme concentrations,
kinetic constants (like Michaelis constants andmaximal activities), and other model-
specific parameters. The relations between steady-state variables and kinetic para-
meters are usually nonlinear. Up to now, there is no general theory that predicts the
effect of large parameter changes in a network. The approach presented here is,
basically, restricted to small parameter changes. Mathematically, the system is
linearized at steady state, which yields exact results, if the parameter changes are
infinitesimally small.
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In this section, wewill first define a set ofmathematical expressions that are useful
to quantify control in biochemical reaction networks. Later we will show the relations
between these functions and their application for prediction of reaction network
behavior.

2.3.2.1 The Coefficients of Control Analysis
Biochemical reaction systems are networks of metabolites connected by chemical
reactions. Their behavior is determined by the properties of their components – the
individual reactions and their kinetics – as well as by the network structure – the
involvement of compounds in different reaction or in brief: the stoichiometry. Hence,
theeffectofaperturbationexertedonareactioninthisnetworkwilldependonboth– the
localpropertiesofthisreactionandtheembeddingofthisreactionintheglobalnetwork.
Let y(x) denotes a quantity that depends on another quantity x. The effect of the

change Dx on y is expressed in terms of sensitivity coefficients:

cyx ¼
x
y
Dy
Dx

� �
Dx! 0

: ð2:105Þ

In practical applications, Dxmight be, e.g., identified with 1% change of x and Dy
with the percentage change of y. The factor x/y is a normalization factor that makes
the coefficient independent of units and of the magnitude of x and y. In the limiting
case Dx ! 0, the coefficient defined in Eq. (2.105) can be written as

cyx ¼
x
y
qy
qx
¼ q ln y

q ln x
: ð2:106Þ

Both right-hand expressions are mathematically equivalent.
Two distinct types of coefficients, local and global coefficients, reflect the relations

among local and global effects of changes. Elasticity coefficients are local coefficients
pertaining to individual reactions. They can be calculated in any given state. Control
coefficients and response coefficients are global quantities. They refer to a given steady
state of the entire system. After a perturbation of x, the relaxation of y to new steady
state is considered.
The general form of the coefficients in control analysis as defined in Eq. (2.106)

contains the normalization x/y. The normalization has the advantage that we get rid
of units and can compare, e.g., fluxes belonging to different branches of a network.
The drawback of the normalization is that x/y is not defined as soon as y¼ 0, which
may happen for certain parameter combinations. In those cases, it is favorable to
work with nonnormalized coefficients. Throughout this chapter, we will consider
usually normalized quantities. If we use nonnormalized coefficients, they areflagged
as ~c. In general, the use of one or the other type of coefficient is also a matter of
personal choice of the modeler.
Changes reflected by the different coefficients are illustrated in Figure 2.11.

2.3.2.2 The Elasticity Coefficients
An elasticity coefficient quantifies the sensitivity of a reaction rate to the change of a
concentration or a parameter while all other arguments of the kinetic law are kept
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fixed. It measures the direct effect on the reaction velocity, while the rest of the
network is not taken into consideration. The sensitivity of the rate vk of a reaction to
the change of the concentration Si of a metabolite is calculated by the e-elasticity:

eki ¼
Si
vk

qvk
qSi

: ð2:107Þ

The p-elasticity is defined with respect to parameters pm such as kinetic constants,
concentrations of enzymes, or concentrations of external metabolites as follows:

pkm ¼
pm
vk

qvk
qpm

: ð2:108Þ

Example 2.12

In Michaelis–Menten kinetics, the rate v of a reaction depends on the substrate
concentration S in the form v¼VmaxS/(Km þ S) (Eq. (2.22)). The sensitivity is given
by the elasticity evS ¼ qlnv=qlnS. Since the Michaelis–Menten equation defines a
mathematical dependency of v on S, it is easy to calculate that

S S
v1 v2 v3

v1 v2(Km, Vmax) v3

Substrate
elasticity

Parameter
elasticity

S1 S2 S1 S2

Fl t l Fl

1

1

v
Sε

( )
2

2

v
vKm

π

S1 S2

v1 v2 v3

Flux control
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S1 S2

v1 v2(Km, Vmax, I) v3

Flux response
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1JC J

321 vvvJ ===
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Figure 2.11 Schematic representation of perturbation and effects
quantified by different coefficients of metabolic control analysis.
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evS ¼
S
v
q
qS

VmaxS
Kmþ S

� �
¼ S

v
VmaxðKmþ SÞ�VmaxS

ðKmþ SÞ2 ¼ S
Kmþ S

: ð2:109Þ

The normalized e-elasticity in the case of mass action kinetics can be calculated
similarly and is always 1. Whenever the rate does not depend directly on a
concentration (e.g., for a metabolite of a reaction system that is not involved in the
considered reaction), the elasticity is zero.

Example 2.13

Typical values of elasticity coefficients will be explained for an isolated reaction
transforming substrate S into product P. The reaction is catalyzed by enzyme E with
the inhibitor I, and the activator A as depicted below

ð2:110Þ
PS

E

AI

Usually, the elasticity coefficients formetabolite concentrations are in the following
range:

evS ¼
S
v
qv
qS

> 0 and evP ¼
P
v
qv
qP
� 0: ð2:111Þ

Inmost cases, the rate increases with the concentration of the substrate (compare,
e.g., Eq. (2.109)) and decreases with the concentration of the product. An exception
from evS > 0 occurs in the case of substrate inhibition (Eq. (2.33)), where the elasticity
will become negative for S> Sopt. The relation evP ¼ 0 holds, if the reaction is
irreversible or if the product concentration is kept zero by external mechanisms.
The elasticity coefficients with respect to effectors I or A should obey

evA ¼
A
v
qv
qA

> 0 and evI ¼
I
v
qv
qI

< 0; ð2:112Þ

since this is essentially what the notions activator and inhibitor mean.
For the most kinetic laws, the reaction rate v is proportional to the enzyme

concentration E. For example, E is amultiplicative factor in themass action rate law
as well as in the maximal rate of the Michaelis–Menten rate law. Therefore, it holds
that

evE ¼
qlnv
qlnE

¼ 1: ð2:113Þ

More complicated interactions between enzymes and substrates such as meta-
bolic channeling (direct transfer of the metabolite from one enzyme to the next
without release to the medium) may lead to exceptions from this rule.
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2.3.2.3 Control Coefficients
When defining control coefficients, we refer to a stable steady state of the metabolic
system characterized by steady-state concentrations Sst¼Sst(p) and steady-state
fluxes J¼ v(Sst(p), p). Any sufficiently small perturbation of an individual reaction
rate, vk ! vk þ Dvk, by a parameter change pk ! pk þ Dpkdrives the system to a new
steady state in close proximity with J ! J þ DJ and Sst ! Sst þ DS. A measure for
the change of fluxes and concentrations are the control coefficients.
The flux control coefficient for the control of rate vk over flux Jj is defined as

Cj
k ¼

vk
Jj

qJj=qpk
qvk=qpk

: ð2:114Þ

The control coefficients quantify the control that a certain reaction vk exerts on the
steady-stateflux Jj. It should benoted that the rate change,Dvk, is caused by the change
of a parameter pk that has a direct effect solely on vk. Thus, it holds

qvk
qpk
6¼ 0 and

qvl
qpk
¼ 0 ðl 6¼ kÞ: ð2:115Þ

Such a parameter might be the enzyme concentration, a kinetic constant, or the
concentration of a specific inhibitor or effector.
In a more compact form the flux control coefficients read

Cj
k ¼

vk
Jj

qJj
qvk

: ð2:116Þ

Equivalently, the concentration control coefficient of concentrations Ssti with respect
to vk reads

Ci
k ¼

vk
Ssti

qSsti
qvk

: ð2:117Þ

2.3.2.4 Response Coefficients
The steady state is determined by the values of the parameters. A third type of
coefficients expresses the direct dependence of steady-state variables on parameters.
The response coefficients are defined as

Rj
m ¼

pm
Jj

qJj
qpm

and Ri
m ¼

pm
Ssti

qSsti
qpm

; ð2:118Þ

where the first coefficient expresses the response of the flux to a parameter
perturbation, while the latter describes the response of a steady-state concentration.

2.3.2.5 Matrix Representation of the Coefficients
Control, response, and elasticity coefficients are defined with respect to all rates,
steady-state concentrations, fluxes, or parameters in the metabolic system and in the
respective model. They can be arranged in matrices:

CJ ¼ fCj
kg; CS ¼ fCi

kg; RJ ¼ fRj
mg; RS ¼ fRi

mg; « ¼ feki g; p ¼ fpkmg:
ð2:119Þ
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Matrix representation can also be chosen for all types of nonnormalized coeffi-
cients. The arrangement in matrices allows us to apply matrix algebra in control
analysis. In particular, the matrices of normalized control coefficients can be
calculated from the matrices of nonnormalized control coefficient as follows:

CJ ¼ ðdgJÞ�1 � ~CJ � dgJ CS ¼ ðdgSstÞ�1 � ~CJ � dgJ
RJ ¼ ðdgJÞ�1 � ~RJ � dgp RS ¼ ðdgSstÞ�1 � ~RS � dgp
« ¼ ðdgvÞ�1 � ~« � dgSst p ¼ ðdgvÞ�1 � ~p � dgp

: ð2:120Þ

The symbol �dg� stands for the diagonal matrix, e.g., for a system with three
reaction holds

dgJ ¼
J1 0 0
0 J2 0
0 0 J3

0
@

1
A:

2.3.2.6 The Theorems of Metabolic Control Theory
Let us assume that we are interested in calculating the control coefficients for a
system under investigation. Usually, the steady-state fluxes or concentrations cannot
be expressed explicitly as function of the reaction rates. Therefore, flux and concen-
tration control coefficients cannot simply be determined by taking the respective
derivatives, as we did for the elasticity coefficients in Example 2.12.
Fortunately, the work with control coefficients is eased by of a set of theorems. The

first type of theorems, the summation theorems, makes a statement about the total
control over a flux or a steady-state concentration. The second type of theorems, the
connectivity theorems, relates the control coefficients to the elasticity coefficients. Both
types of theorems together with network information encoded in the stoichiometric
matrix contain enough information to calculate all control coefficients.
Here, we will first introduce the theorems. Then, we will present a hypothetical

perturbation experiment (as introduced by Kacser and Burns) to illustrate the
summation theorem. Finally, the theorems will be derived mathematically.

2.3.2.7 The Summation Theorems
The summation theorems make a statement about the total control over a certain
steady-state flux or concentration. The flux control coefficients and concentration
control coefficients fulfill, respectively,

Xr
k¼1

C
Jj
vk ¼ 1 and

Xr
k¼1

CSi
vk
¼ 0; ð2:121Þ

for any flux Jj and any steady-state concentration Ssti . The quantity r is the number of
reactions. Theflux control coefficients of ametabolic network for one steady-stateflux
sumup to one. Thismeans that all enzymatic reactions can share the control over this
flux. The control coefficients of a metabolic network for one steady-state concentra-
tion are balanced. This means again that the enzymatic reactions can share the
control over this concentration, but some of them exert a negative control while
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others exert a positive control. Both relations can also be expressed in matrix
formulation. We get

C J � 1 ¼ 1 and C S � 1 ¼ 0: ð2:122Þ
The symbols 1 and 0 denote column vectors with r rows containing as entries only

ones or zeros, respectively. The summation theorems for the nonnormalized control
coefficients read

~C
J �K ¼ K and ~C

S �K ¼ 0; ð2:123Þ
where K is the matrix satisfying N �K ¼ 0 (see Section 2.2). A more intuitive
derivation of the summation theorems is given in the following example according
to Kacser and Burns [33].

Example 2.14

The summation theorem for flux control coefficients can be derived using a thought
experiment.
Consider the following unbranched pathway with fixed concentrations of the

external metabolites, S0 and S3:

S0$V1 S1$V2 S2$V3 S3 ð2:124Þ
What happens to steady-state fluxes andmetabolite concentrations, if we perform

an experimental manipulation of all three reactions leading to the same fractional
change a of all three rates?

dv1
v1
¼ dv2

v2
¼ dv3

v3
¼ a: ð2:125Þ

The flux must increase to the same extent, dJ/J¼a, but, since rates of producing
and degrading reactions increase to the same amount, the concentrations of the
metabolites remain constant dS1/S1¼ dS2/S2¼ 0.
The combined effect of all changes in local rates on the system variables Sst1 ; S

st
2 ,

and J can be written as the sum of all individual effects caused by the local rate
changes. For the flux holds

dJ
J
¼ CJ

1
dv1
v1
þCJ

2
dv2
v2
þCJ

3
dv3
v3

: ð2:126Þ

It follows

a ¼ aðCJ
1þCJ

2þCJ
3Þ or 1 ¼ CJ

1þCJ
2þCJ

3: ð2:127Þ
This is just a special case of Eq. (2.121). In the same way, for the change of

concentration Sst1 , we obtain

dSst1
Sst1
¼ CS1

1
dv1
v1
þCS1

2
dv2
v2
þCS1

3
dv3
v3

: ð2:128Þ
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Finally, we get

0 ¼ CS1
1 þCS1

2 þCS1
3 as well as 0 ¼ CS2

1 þCS2
2 þCS2

3 : ð2:129Þ
Although shown here only for a special case, these properties hold in general for

systems without conservation relations. The general derivation is given in
Section 2.3.2.9.

2.3.2.8 The Connectivity Theorems
Flux control coefficients and elasticity coefficients are related by the expression

Xr
k¼1

C
Jj
vke

vk
Si
¼ 0: ð2:130Þ

Note that the sum runs over all rates vk for any flux Jj. Considering the concentra-
tion Si of a specificmetabolite and a certainflux Jj, each term contains the elasticity evkSi
describing the direct influence of a change of Si on the rates vk and the control
coefficient expressing the control of vk over Jj.
The connectivity theorembetween concentration control coefficients and elasticity

coefficients reads

Xr
k¼1

CSh
vk
evkSi ¼ �dhi: ð2:131Þ

Again, the sum runs over all rates vk, while Sh and Si are the concentrations of two

fixed metabolites. The symbol dhi ¼ 0; if h 6¼ i
1; if h ¼ i

�
is the so-called Kronecker

symbol.
In matrix formulation, the connectivity theorems read

C J � « ¼ 0 and CS � « ¼ �I; ð2:132Þ
where I denotes the identity matrix of size n� n. For nonnormalized coefficients, it
holds

~C
J � ~« � L ¼ 0 and ~C

S � ~« � L ¼ �L; ð2:133Þ

where L is the link matrix that expresses the relation between independent and
dependent rows in the stoichiometric matrix (Eq. (2.75)) A comprehensive represen-
tation of both summation and connectivity theorems for nonnormalized coefficients
is given by the following equation:

~C
J

~C
S

� �
� ðK ~«L Þ ¼ K 0

0 �L
� �

: ð2:134Þ

The summation and connectivity theorem together with the structural informa-
tion of the stoichiometric matrix are sufficient to calculate the control coefficients
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for a metabolic network. This shall be illustrated for a small network in the next
example.

Example 2.15

To calculate the control coefficients, we study the following reaction system:

P0$v1 S$v2 P2 ð2:135Þ
The flux control coefficients obey the theorems

CJ
1þCJ

2 ¼ 1 and CJ
1e

1
SþCJ

2e
2
S ¼ 0; ð2:136Þ

which can be solved for the control coefficients to yield

CJ
1 ¼

e2S
e2S�e1S

and CJ
2 ¼

�e1S
e2S�e1S

: ð2:137Þ

Since usually e1S < 0 and e2S > 0 (see Example 2.13), both control coefficients
assume positive values CJ

1 > 0 and CJ
2 > 0. This means that both reactions exert a

positive control over the steady-state flux, and acceleration of any of them leads to
increase of J, which is in accordance with common intuition.
The concentration control coefficients fulfil

CS
1 þCS

2 ¼ 0 and CS
1e

1
SþCS

2e
2
S ¼ �1; ð2:138Þ

which yields

CS
1 ¼

1
e2S�e1S

and CS
2 ¼

�1
e2S�e1S

: ð2:139Þ

With e1S < 0 and e2S > 0, we get CS
1 > 0 and CS

2 < 0, i.e., increase of the first
reaction causes a raise in the steady-state concentration of Swhile acceleration of the
second reaction leads to the opposite effect.

2.3.2.9 Derivation of Matrix Expressions for Control Coefficients
After having introduced the theorems of MCA, we will derive expressions for the
control coefficients in matrix form. These expressions are suited for calculating the
coefficients even for large-scale models. We start from the steady-state condition

NvðS stðpÞ; pÞ ¼ 0: ð2:140Þ
Implicit differentiation with respect to the parameter vector p yields

N
qv
qS

qS st

qp
þN

qv
qp
¼ 0: ð2:141Þ

Since we have chosen reaction-specific parameters for perturbation, the matrix of
nonnormalized parameter elasticities contains nonzero entries in the main diagonal
and zeros elsewhere (compare Eq. (2.115)).
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qv
qp
¼

qv1
qp1

0 0

0
qv2
qp2

0
. . .

0 0
qvr
qpr

0
BBBBBB@

1
CCCCCCA: ð2:142Þ

Therefore, this matrix is regular and has an inverse. Furthermore, we consider the
Jacobian matrix

M ¼ N
qv
qS
¼ N ~«: ð2:143Þ

The Jacobian M is a regular matrix if the system is asymptotically stable and
contains no conservation relations. The case with conservation relations is consid-
ered below.Here, wemay premultiply Eq. (2.141) by the inverse ofM and rearrange to
get

qS st

qp
¼ � N

qv
qS

� ��1
N

qv
qp
¼ �M�1N qv

qp
� ~R

S
: ð2:144Þ

As indicated, qSst/qp is the matrix of nonnormalized response coefficients for
concentrations. Postmultiplication by the inverse of the nonnormalized parameter
elasticity matrix gives

qS st

qp
qv
qp

� ��1
¼ � N

qv
qS

� ��1
N ¼ ~C

S
: ð2:145Þ

This is the matrix of nonnormalized concentration control coefficients. The right
(middle) site contains no parameters. Thismeans, that the control coefficients do not
depend on the particular choice of parameters to exert the perturbation as long as
Eq. (2.115) is fulfilled. The control coefficients are only dependent on the structure of
the network represented by the stoichiometric matrix N, and on the kinetics of the
individual reactions, represented by the nonnormalized elasticity matrix ~« ¼ qv=qS.
The implicit differentiation of

J ¼ vðS stðpÞ; pÞ; ð2:146Þ
with respect to the parameter vector p leads to

qJ
qp
¼ qv

qp
þ qv

qS
qS st

qp
¼ I� qv

qS
N

qv
qS

� ��1
N

 !
qv
qp
� ~R

J
: ð2:147Þ

This yields, after some rearrangement, an expression for the nonnormalized flux
control coefficients:

qJ
qp

qv
qp

� ��1
¼ I� qv

qS
N

qv
qS

� ��1
N ¼ ~C

J
: ð2:148Þ
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The normalized control coefficients are (by use of Eq. (2.120))

CJ ¼ I�ðdgJÞ�1 qv
qS

N
qv
qS

� ��1
N

 !
ðdgJÞ and

CS ¼ �ðdgS stÞ�1 N
qv
qS

� ��1
N

 !
ðdgJÞ:

ð2:149Þ

These equations can easily be implemented for numerical calculation of control
coefficients or used for analytical computation. They are also suited for derivation of
the theorems of MCA. The summation theorems for the control coefficients follow
from Eq. (2.149) by postmultiplication with the vector 1 (the row vector containing
only 1s), and consideration of the relations (dg J)�1¼ J and NJ¼ 0. The connectivity
theorems result from postmultiplication of Eq. (2.149) with the elasticity matrix
«¼ (dgJ)�1�(qv/qS)�dgSst, and using that multiplication of a matrix with its inverse
yields the identity matrix I of respective type.
If the reaction system involves conservation relations, we eliminate dependent

variables as explained in Section 1.2.4. In this case, the nonnormalized coefficients
read

~C
J ¼ I� qv

qS
L NR

qv
qS

� ��1
NR and ~C

S ¼ �L NR
qv
qS

� ��1
NR ð2:150Þ

and the normalized control coefficients are obtained by applying Eq. (2.120).
An example for calculation of flux control coefficients can be found in the web

material.
To investigate the implications of control distribution, we will now analyze the

control pattern in an unbranched pathway:

S0�!v1 S1�!v2 S2 � � � Sr�1$vr Sr ð2:151Þ
with linear kinetics vi¼ kiSi�1� k�iSi, the equilibrium constants qi¼ ki/k�i and fixed
concentrations of the externalmetabolites,S0 andSr. In this case, one can calculate an
analytical expression for the steady-state flux,

J ¼
S0
Qr
j¼1

qj�Sr
Pr
l¼1

1
kl

Qr
m¼l

qm

ð2:152Þ

as well as an analytical expression for the flux control coefficients

CJ
i ¼

1
ki

Yr
j¼i

qj

0
@

1
A � Xr

l¼1

1
kl

Yr
m¼l

qm

 !�1
: ð2:153Þ

Let us consider two very general cases. First assume that all reactionshave the same
individual kinetics, ki¼ kþ , k�i¼ k� for i¼ 1, . . ., r and that the equilibrium
constants, which are also equal, satisfy q¼ kþ /k�> 1. In this case, the ratio of two
subsequent flux control coefficients is

2.3 Kinetic Models of Biochemical Systems j61



CJ
i

CJ
iþ 1

¼ kiþ 1

ki
qi ¼ q > 1: ð2:154Þ

Hence, the control coefficients of the preceding reactions are larger than the control
coefficients of the succeeding reactions and flux control coefficients are higher in the
beginning of a chain than in the end. This is in agreement with the frequent
observation that flux control is strongest in the upper part of an unbranched reaction
pathway.
Now assume that the individual rate constants might be different, but that all

equilibrium constants are equal to one, qi¼ 1 for i¼ 1, . . . , r. This implies ki¼ k�i.
Equation (2.153) simplifies to

CJ
i ¼

1
ki
�
Xr
l¼1

1
kl

 !�1
: ð2:155Þ

Consider now the relaxation time ti¼ 1/(ki þ k�i) (see Section 4.3) as a measure for
the rate of an enzyme. The flux control coefficient reads

CJ
i ¼

ti
t1þ t2þ � � � þ tr

: ð2:156Þ

This expression helps to elucidate two aspects of metabolic control. First, all
enzymes participate in the control since all enzymes have a positive relaxation time.
There is no enzyme that has all control, i.e., determines the flux through the pathway
alone. Second, slow enzymes with a higher relaxation time exert in general more
control than fast enzymes with a short relaxation time.
The predictive power of flux control coefficients for directed changes of flux is

illustrated in the following example.

Example 2.16

Assume that we can manipulate the pathway shown in Figure 2.12 by changing the
enzyme concentration in a predefined way. We would like to explore the effect of the
perturbation of the individual enzymes. For a linear pathway (see Eqs. (2.151)–
(2.153)) consisting of four consecutive reactions, we calculate the flux control
coefficients. For i¼ 1, . . . , 4, it shall hold that (i) all enzyme concentrations Ei¼ 1,
(ii) the rate constants be ki¼ 2, k�i¼ 1, and (iii) the concentrations of the external
reactants be S0¼ S4¼ 1. The resulting flux is J¼ 1 and the flux control coefficients are
C J ¼ ð 0:533 0:267 0:133 0:067 ÞT according to Eq. (2.149).
If we now perturb slightly the first enzyme, lets say perform a percentage change of

its concentration, i.e., E1 ! E1 þ 1%, then Eq. (2.105) implies that the flux increases
as J! JþCJ

1 � 1%. In fact, the flux in the new steady state is JE1! 1:01 � E1 ¼ 1:00531.
Increasing E2, E3, or E4 by 1% leads to flux values of 1.00265, 1.00132, and 1.00066,
respectively. A strong perturbationwould not yield similar effects. This is illustrated in
Figure 2.12.
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2.4
Tools and Data Formats for Modeling

Summary

This section gives an overview about different simulation techniques and introduces
tools, resources, and standard formats used in systems biology. Modeling and
simulation functionalities of the tools are presented and common data formats used
by these tools and in general in systems biology are introduced. Furthermore, model
databases and databases of cellular and biochemical reaction networks are
discussed.

The development ofmodels of biological and in particular cellular systems starts by
the collection of themodel components and its interactions. Usually, in the first step,
one formulates the biochemical reaction equations that define the topological
structure of the reaction network and the reaction stoichiometries. For this purpose,
it is often also useful to draw a diagram that illustrates the network structure either of
the whole model or of a particular part. Once the reaction network and its stoichi-
ometry are defined, amore detailedmathematical model can be constructed. For this
purpose, often systems of ODEs are applied. Usually, this requires very detailed
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Figure 2.12 Effect of enzyme concentration
change on steady-state flux and on flux control
coefficients in an unbranched pathway
consisting of four reactions. In the reference
state, all enzymes have the concentration 1 (in
arbitrary units), the control distribution is the
same as in case (c), and the steady-state flux is
J¼ 1. (a) Change of E1 ! 5E1 while keeping the
other enzyme concentrations constant results in
a remarkable drop of control of the first enzyme.

The resulting flux is JE1! 5 �E1 ¼ 1:7741. (b) The
change E4 ! 5E4 corresponds to
JE4! 5 �E4 ¼ 1:0563. There is only slight changeof
control distribution. (c) Equal enzyme
concentrations with Ei ! 2Ei, i¼ 1, . . . , 4 results
in JEi! 2 �Ei ¼ 2. (d) Optimal distribution of
enzyme concentration E1¼ 3.124, E2¼ 2.209,
E3¼ 1.562, E4¼ 1.105 resulting in the maximal
steady-state flux Jmax¼ 2.2871.
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information about the kinetics of the individual reactions or appropriate assumptions
have to be made.
In this section, databases are presented that provide information on the network

structure of cellular processes such as metabolic pathways and signal transduction
pathways. Moreover, data formats used for the structural, mathematical, and graphi-
cal description of biochemical reaction networks are introduced. We will start this
section with an overview of simulation techniques and of software tools that support
the user by the development of models.

2.4.1
Simulation Techniques

In systems biology, different simulation techniques are used such as systems of
ODEs, stochastic methods, Petri nets, p-calculus, PDEs, cellular automata (CA)
methods, agent-based systems, and hybrid approaches. The use of ODEs in
biological modeling is widespread and by far the most common simulation
approach in computational systems biology [39, 40]. The description of a biological
model by a systemofODEs has already been discussed in the earlier sections. Some
ODEs are simple enough to be solved analytically and have an exact solution. More
complex ODE systems, as they are occurring in most systems biology simulations,
must be solved numerically by appropriate algorithms. A first method for the
numerical solution of ODEs was derived by Newton and Gauss. Methods that
provide more improved computational accuracy are, for instance, Runge–Kutta
algorithms and implicit methods that can also handle so-called stiff differential
equations. Simulation tools for systems biology have to cope with systems of
multiple reactants and multiple reactions. For the numerical integration of such
complex ODE systems, they usually make use of more advanced programs such as
LSODA [41, 42], CVODE [43], or LIMEX [44]. In the following, Petri nets andCA are
described in more detail.

2.4.1.1 Petri Nets
An alternative toODEs for the simulation of time-dependent processes are Petri nets.
A Petri net is a graphical and mathematical modeling tool for discrete and parallel
systems. The mathematical concept was developed in the early 1960s by Carl Adam
Petri. The basic elements of a Petri net are places, transitions and arcs that connect
places and transitions.When represented graphically, places are shown as circles and
transitions as rectangles. Places represent objects (e.g., molecules, cars, and
machine parts) and transitions describe if and how individual objects are inter-
converted. Places can contain zero ormore tokens, indicating the number of objects
that currently exist. If a transition can take place (can fire) or not depends on the
places that are connected to the transition by incoming arcs, to contain enough
tokens. If this condition is fulfilled, the transition fires and changes the state of the
system by removing tokens from the input places and adding tokens to the output
places. The number of tokens that are removed and added depends on the weights
of the arcs.

64j 2 Modeling of Biochemical Systems



Petri nets are not only an optically pleasing representation of a system but can
also be describedmathematically in terms of integer arithmetic. For simple types of
Petri nets, certain properties can thus be calculated analytically, but often the net
has to be run to study the long-term system properties. Over the years many,
extensions to the basic Petri net model have been developed for the different
simulation purposes [45].

1. Hybrid Petri nets that add the possibility to have places that contain a continuous
token number instead of discrete values.

2. Timed Petri nets extend transitions to allow for a specific time delay between the
moment when a transition is enabled and the actual firing.

3. Stochastic Petri nets that go one step further and allow a random time delay drawn
from a probability distribution.

4. Hierarchical Petri nets, in which modularity is introduced by representing whole
nets as a single place or transition of a larger net.

5. Colored Petri nets that introduce different types (colors) or tokens and more
complicated firing rules for transitions.

With these extensions, Petri nets are powerful enough to be used for models in
systems biology. Biochemical pathways can be modeled with places representing
metabolites, transitions representing reactions and stoichiometric coefficients
are encoded as different weights of input and output arcs. Consequently, Petri
nets have been used to model metabolic networks [46, 47] and signal transduc-
tion pathways [48]. Many free and commercial tools are available to explore
the behavior of Petri nets. The Petri Nets World webpage (http://www.informatik.
uni-hamburg.de/TGI/PetriNets/) is an excellent starting point for this
purpose.

2.4.1.2 Cellular Automata
Cellular Automata (CA) are tools for the simulation of temporal or spatiotemporal
processes using discrete time and/or spatial steps (see Section 3.4.1.3). A cellular
automaton consists of a regular grid or lattice of nearly identical components, called
cells, where each cell has a certain state of a finite number of states. The states of the
cells evolve synchronously in discrete time steps according to a set of rules. Each
particular state of cell is determined by the previous states of its neighbors. CA were
invented in the late 1940s by von Neumann and Ulam. Awell-known CA simulation
is Conway�s Game of Life [49].

2.4.2
Simulation Tools

In the following, three different simulation tools are presented that essentially make
use of ODE systems for simulation, and come along with further functionalities
important for modeling, such as graphical visualization of the reaction network,
advanced analysis techniques, and interfaces to external model and pathway data-
bases. Furthermodeling and simulation tools are presented in Chapter 17.Modeling
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and simulations tools have also been reviewed by Alves et al. [50], Klipp et al. [51],
Materi and Wishart [52], and Wierling et al. [53].
Modeling systems have to accomplish several requirements. They must have a

well-defined internal structure for the representation of model components and
reactions, and optionally functionalities for the storage of a model in a well-defined
structure, standardized format, or database. Further desired aspects are a user-
friendly interface for model development, a graphical representation of reaction
networks, a detailed description of the mathematical model, integrated simulation
engines, e.g., for deterministic or stochastic simulation, along with graphical
representations of those simulation results, and functionalities for model analysis
andmodel refinement. This is a very broad spectrumof functionalities. Existing tools
cover different aspects of these functionalities. In the following, systems biology tools
will be introduced that already accomplish several of the desired aspects. CellDe-
signer is one of those widely used in the systems biology community [51]. It has a
user-friendly process diagram editor, uses the Systems Biology Markup Language
(SBML; see Section 2.4.3.1) for model representation and exchange, and provides
fundamental simulation and modeling functions. Another program with similar
functionalities is COPASI. COPASI has an interface for the model definition and
representation and provides several methods for simulation, model analysis, and
refinement such as parameter scanning, MCA, optimization, or parameter estima-
tion. Similarly, also PyBioS has rich functionalities formodel design, simulation, and
analysis. In contrast to the stand-alone programs CellDesigner and Copasi, PyBioS is
aweb application. Aparticular feature of PyBioS is its interfaces to pathway databases,
like Reactome or KEGG, which can directly be used for model generation.

2.4.2.1 CellDesigner
CellDesigner provides an advanced graphical model representation along with an
easy to use user-interface and an integrated simulation engine [54]. The current
version ofCellDesigner is 4.0.1. The process diagrameditor ofCellDesigner supports
a rich set of graphical elements for the description of biochemical and gene-
regulatory networks. Networks can be constructed from compartments, species,
and reactions. CellDesigner comeswith a large number of predefined shapes that can
be used for different types of molecules, such as proteins, receptors, ion channels,
small metabolites, etc. It is also possible to modify the symbols to indicate phosphor-
ylations or other modifications. The program also provides several icons for special
reaction types like catalysis, transport, inhibition, and activation. For version 4.0, it is
announced that the graphical elements are compliant with the Systems Biology
Graphical Notation (SBGN; see Section 2.4.3.3).
Reading and writing of the models is SBML-based (see Section 2.4.3.1 for more

details onSBML) and themodelswritten byCellDesigner pass the online validation at
http://sbml.org/tools/htdocs/sbmltools.php and thus are conform with the SBML
standard. A nice feature in this respect is the ability to display the SBML model
structure as a tree (Figure 2.13, left side). A click on a species or reaction in this tree
highlights the corresponding elements in the graphics canvas and in the matching
tab on the right side showing further details. This tab is also the place where initial
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concentrations and reaction details are entered. CellDesigner allows entering
arbitrary kinetic equations, but has unfortunately no list of standard kinetics (mass
action orMichaelis–Menten) that could be applied. For each reaction, the rate law has
to be typed in by hand. A connection to the Systems Biology Workbench (SBW, see
Section 17.4) is realized via the SBWmenu andprovides an interface to communicate
with other SBW-compliant programs. For a further introduction to CellDesigner, a
tutorial can be obtained at its website (http://www.celldesigner.org/). A movie
introducing the usage of CellDesigner is availabe from the website of this book.

2.4.2.2 COPASI
Another platform-independent and user-friendly biochemical simulator that offers
several unique features is COPASI [55]. COPASI is the successor to Gepasi [56, 57].
Its current version is 4.4 (http://www.copasi.org/). COPASI does not have such a rich
visualization of the reaction network as CellDesigner, but it provides advanced
functionalities for model simulation and analysis. In contrast to many other tools,
it can switch between stochastic and deterministic simulationmethods and supports
hybrid deterministic-stochastic methods.

Figure 2.13 CellDesigner�s process diagram editor (a) supports a
rich set of graphical elements for different cellular species and
reaction types. Simulations can be performed in CellDesigner
using its integrated simulation engine (b).
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The user interface has a hierarchical menu (Figure 2.14, left side) that provides
access to all the different functionalities of the tool. The biochemical model can be
browsed according to its compartments, metabolites, and reactions including
detailed list of the initial concentrations and kinetic parameters of the model.
COPASI has a comprehensive set of standard methodologies for model analysis.
It comprises the computation of steady states and their stability, supports the analysis
of the stoichiometric network, e.g., the computation of elementary modes [25],
supportsMCA, and hasmethods for the optimization and parameter estimation. For
compatibility with other tools, COPASI also supports the import and export of SBML-
based models. For the definition of the kinetics, COPASI provides a copious set of
predefined kinetic laws to choose from. A movie that is introducing the usage of
COPASI is available from the website of this book.

2.4.2.3 PyBioS
Similarly as CellDesigner and Copasi, also PyBioS is designed for applications in
systems biology and supports modeling and simulation [53]. PyBioS is a web-based
environment (http://pybios.molgen.mpg.de/) that provides a framework for the
conduction of kinetic models of various sizes and levels of granularity. The tool is
amodeling platform for editing and analyzing biochemicalmodels in order to predict
the time-dependent behavior of the models. The platform has interfaces to external
pathway databases (e.g., Reactome andKEGG) that can directly be used duringmodel
development for the definition of the structure of the reaction system. Figure 2.15

Figure 2.14 The different functionalities of COPASI are arranged
in a hierarchicalmenu at left-hand side of its user interface.Details
about the individual methods are listed in the right panel.
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shows screenshots of the PyBioS modeling and simulation environment. PyBioS
defines a set of object classes (e.g., cell, compartment, compound, protein, complex,
gene) for the definition of hierarchical models. Models are stored in a model
repository. Support for the export and import of SBML-based models makes the
platform compatible with other systems biology tools. Besides time course simula-
tion, PyBioS also provides analysis methods, e.g., for the identification of steady
states and their stability or for sensitivity analysis, such as the analysis of the steady-
state behavior versus a varying parameter value or the computation of metabolic
control coefficients. The reaction network of a model or individual parts of it can be
visualized by network diagrams of themodel components and their reactions that are

Figure 2.15 The PyBioS simulation
environment. A particular model can be selected
from themodel repository (a) and its hierarchical
model structure can be inspected via the View-
tab at the top of the browser-window (b). A
graphical representation of the model is
provided by an automatically generated network
diagram (accessible via the Network-tab), for
example (c) shows the forward and reverse
reaction of the isomerization of glucose-

phosphate to fructose-phosphate of a glycolysis
model. The Reactions-tab offers an overview of
all reactions of themodel (d). Simulations can be
performed via the Simulation-tab (e). A
simulation is based on an automatically
generatedmathematical model derived from the
corresponding object-oriented model that
comprises the network of all reactions and their
respective kinetics.
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connected via edges. Time course results of simulation experiments can be plotted
into the network graphs and used for the interpretation of the model behavior.

2.4.3
Data Formats

The documentation and exchange of models need to be done in a defined way. In the
easiest way – as usually found in publications – the biochemical reactions and the
mathematical equations that are describing the model can be listed, using common
formalism for the representation of biochemical and mathematical equations. These
conventions provide a good standard for the documentation and exchange in pub-
lications. However, these formats are suitable for humans but not for the direct
processing by a computer. This gave rise to the development of standards for the
description of models. During the last years, the eXtensible Markup Language (XML,
http://www.w3.org/XML) has been proved to be a flexible tool for the definition of
standard formats. In the following text, a brief introduction to XML as well as a
description of SBML, a standard formodel description that is based on XML, is given.
Moreover,BioPAX,a standard for thedescriptioncellular reactionsystems, andSBGN,
a standard for the graphical representation of reaction networks, will be described.

2.4.3.1 Systems Biology Markup Language
The Systems Biology Markup Language (SBML, http://www.sbml.org) is a free and
open format for the representation of models common to research in many areas of
computational biology, including cell signaling pathways, metabolic pathways, gene
regulation, and others [58]. It is already supported by many software tools [59]. In
January 2009, the SBML homepage listed more than 110 software systems support-
ing SBML. Currently, there are two SBML specifications denoted Level 1 and Level 2.
Level 2 is the most recent specification and therefore it is described in the following
text.
SBML is defined as an XML compliant format. XML documents are written as

plain text and have a very clear and simple syntax that can easily be read by both
humans and computer programs; however, it is generally intended to be written and
read by computers, not humans. In XML, information is associated with tags
indicating the type or formatting of the information. Tags are used to delimit and
denote parts of the document or to add further information to the document
structure. Using miscellaneous start tags (e.g., <tag>) and end tags (e.g., </tag>),
information can be structured as text blocks in a hierarchical manner.

Example 2.17

The following example of the phosphorylation reaction of aspartate catalyzed by the
aspartate kinase illustrates the general structure of an SBML file.

AspartateþATP���������!Aspartate kinase
Aspartyl phosphateþADP
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(1) <?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?>

(2) <sbml level=‘‘2’’ version=‘‘1’’ xmlns=‘‘http://www.

sbml.org/sbml/level2’’>

(3) <model id=‘‘AK_reaction’’>

(4) <listOfUnitDefinitions>

(5) <unitDefinition id=‘‘mmol’’>

(6) <listOfUnits>

(7) <unit kind=‘‘mole’’ scale=‘‘-3’’ />

(8) </listOfUnits>

(9) </unitDefinition>

(10) <unitDefinition id=‘‘mmol_per_litre_per_sec’’>

(11) <listOfUnits>

(12) <unit kind=‘‘mole’’ scale=‘‘-3’’ />

(13) <unit kind=‘‘litre’’ exponent=‘‘-1’’ />

(14) <unit kind=‘‘second’’ exponent=‘‘-1’’ />

(15) </listOfUnits>

(16) </unitDefinition>

(17) </listOfUnitDefinitions>

(18) <listOfCompartments>

(19) <compartment id=‘‘cell’’ name=‘‘Cell’’ size=‘‘1’’

units=‘‘volume’’ />

(20) </listOfCompartments>

(21) <listOfSpecies>

(22) <species id=‘‘asp’’ name=‘‘Aspartate’’

compartment=‘‘cell’’ initialConcentration=‘‘2’’

substanceUnits=‘‘mmol’’ />

(23) <species id=‘‘aspp’’ name=‘‘Aspartyl phosphate’’

compartment=‘‘cell’’ initialConcentration=‘‘0’’

substanceUnits=‘‘mmol’’ />

(24) <species id=‘‘atp’’ name=‘‘ATP’’ compartment=‘‘cell’’

initialConcentration=‘‘0’’ substanceUnits=‘‘mmol’’ />

(25) <species id=‘‘adp’’ name=‘‘ADP’’ compartment=‘‘cell’’

initialConcentration=‘‘0’’ substanceUnits=‘‘mmol’’ />

(26) </listOfSpecies>

(27) <listOfReactions>

(28) <reaction id=‘‘AK’’ reversible=‘‘false’’>

(29) <listOfReactants>

(30) <speciesReference species=‘‘asp’’

stoichiometry=‘‘1’’ />

(31) <speciesReference species=‘‘atp’’

stoichiometry=‘‘1’’ />

(32) </listOfReactants>

(33) <listOfProducts>

(34) <speciesReference species=‘‘aspp’’

stoichiometry=‘‘1’’ />
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(35) <speciesReference species=‘‘adp’’ stoichiometry=

‘‘1’’ />

(36) </listOfProducts>

(37) <kineticLaw>

(38) <math xmlns=‘‘http://www.w3.org/1998/Math/

MathML’’>

(39) <apply>

(40) <times />

(41) <ci> k </ci>

(42) <ci> asp </ci>

(43) <ci> atp </ci>

(44) <ci> cell </ci> <ci> cell </ci>

(45) </apply>

(46) </math>

(47) <listOfParameters>

(48) <parameter id=‘‘k’’ value=‘‘2.25’’ units=‘‘per_mM_

and_min’’ />

(49) </listOfParameters>

(50) </kineticLaw>

(51) </reaction>

(52) </listOfReactions>

(53) </model>

(54) </sbml>

Line 1 in the above example defines the document as a XML document. The
SBML model is coded in lines 2–54. It is structured into several lists that define
different properties of the model. Most important lists that are usually used are the
definition of units (lines 4–17), of compartments (lines 18–20), of species (lines
21–26), and finally of the reactions themselves (lines 27–52). Most entries in SBML
have one required attribute, id, to give the instance a unique identifier by which
other parts of the SBML model definition can refer to it. Some base units, like
gram, meter, liter, mole, second, etc., are already predefined in SBML. More
complex units derived from the base units are defined in the list of units. For
instance, mM/s that is equal to mmol � l�1 sec�1 can be defined as shown in lines
10–16 and used by its id in the subsequent definition of parameters and initial
concentrations. Compartments are used in SBML as a construct for the grouping
of model species. They are defined in the list of compartments (lines 18–20) and
can be used not only for the definition of cellular compartments but also for
grouping in general. Each compartment can have a name attribute and defines a
compartment size. Model species are defined in the list of species. Each species
has a recommended id attribute that can be used to refer it and can define its
name and initial value with its respective unit. Species identifiers are used in the
list of reactions (lines 27–52) for the definition of the individual biochemical
reactions. Reversibility of a reaction is indicated by an attribute of the reaction tag
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(lines 28). Reactants and products of a specific reaction along with their respective
stoichiometry are specified in separate lists (lines 29–36).
The kinetic law of an individual reaction (lines 37–50) is specified in MathML

for SBML Level 2. MathML is an XML-based markup language especially created
for the representation of complicated mathematical expressions. In the above
example, the rate law reads k�[asp]�[atp]�cell2, where k is a kinetic parameter [asp]
and [atp] are the concentrations of aspartate and ATP, respectively, and cell is the
volume of the cell. The consideration of the cell volume is needed, since rate laws
in SBML are expressed in terms of amount of substance abundance per time
instead of the traditional expression in terms of amount of substance concen-
tration per time. The formulation of the rate law in the traditional way embodies
the tacit assumption that the participating reaction species are located in the
same, constant volume. This is done because attempting to describe reactions
between species located in different compartments that differ in volume by the
expression in terms of concentration per time quickly leads to difficulties.

2.4.3.2 BioPAX
Another standard format that is used in systems biology and designed for handling
information on pathways and topologies of biochemical reaction networks is BioPAX
(http://www.biopax.org). While SBML is tuned toward the simulation of models of
molecular pathways, BioPAX is a more general and expressive format for the
description of biological reaction systems even it is lacking definitions for the
representation of dynamic data such as kinetic laws and parameters. BioPAX is
defined by the BioPAX working group (http://www.biopax.org/). The BioPax Ontol-
ogy defines a large set of classes for the description of pathways, interactions, and
biological entities as well as their relations. Reaction networks described by BioPAX
can be represented by the use XML. Many systems biology tools and databases make
use of BioPAX for the exchange of data.

2.4.3.3 Systems Biology Graphical Notation
Graphical representations of reaction networks prove as very helpful tools for the
work in systems biology. The graphical representation of a reaction system is not
only helpful during the design of a new model and as a representation of the
model topology, it is also helpful for the analysis and interpretation for instance
of simulation results. Traditionally, diagrams of interacting enzymes and com-
pounds have been written in an informal manner of simple unconstrained
shapes and arrows. Several diagrammatic notations have been proposed for the
graphical representation (e.g., [60–64]). As a consequence of the different
proposals, the Systems Biology Graphical Notation (SBGN) has been set up
recently. It provides a common graphical notation for the representation of
biochemical and cellular reaction networks. SBGN defines a comprehensive set
of symbols, with precise semantics, together with detailed syntactic rules defin-
ing their usage. Furthermore, SBGN defines how such graphical information is
represented in a machine-readable form to ensure its proper storage, exchange,
and reproduction of the graphical representation.
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SBGN defines three different diagram types: (i) State Transition diagrams that
are depicting all molecular interactions taking place, (ii) Activity Flow diagrams that
are representing only the flux of information going from one entity to another, and
(iii) Entity Relationship diagrams that are representing the relationships between
different molecular species. In a State Transition diagram, each node represents a
given state of a species, and therefore a given species may appear multiple times.
State Transition diagrams are suitable for following the temporal process of inter-
actions. A drawback of State Transition diagrams, however, is that the representation
of each individual state of a species results quickly in very large diagram and due to
this, it becomes difficult to understand what interactions actually exist for the species
in question. In such a case, an Entity Relation diagram is more suitable. In an Entity
Relation diagram, a biological entity appears only once.
SBGN defines several kinds of symbols, whereas two types of symbols are

distinguished: nodes and arcs. There are different kinds of nodes defined. Reacting
state or entity nodes represent, e.g., macromolecules, such as protein, RNA, DNA,
polysaccharide, or simple chemicals, such as a radical, an ion, or a small molecule.
Container nodes are defined for the representation of a complex, compartment, or
module. Different transition nodes are defined for the representation of transitions
like biochemical reactions, associations, like protein-complex formation, or dissocia-
tions, like the dissociation of a protein complex. The influence of a node onto another
is visualized by different types of arcs representing, e.g., consumption, production,
modulation, stimulation, catalysis, inhibition, or trigger effect. Not all node and arc
symbols are defined for each of the three diagram types. A detailed description of the
different nodes, arcs, and the syntax of their usage by the different diagram types is
given in the specification of SBGN (see http://sbgn.org/).
Examples of a State Transition and an Entity Relationship diagram is given in

Figure 2.16.

2.4.3.4 Standards for Systems Biology
With the increasing amount of data inmodern biology the requirement of standards
used for data integration became more and more important. For example, in the
course of a microarray experiment, a lot of different information accumulates, as
information about the samples, the type of microarray that is used, the experimental
procedure including the hybridization experiment, the data normalization, and the
expression data itself. It turns out that an important part of systems biology is data
integration. This requires a conceptual design and the development of common
standards.
The development of a standard involves four steps: an informal design of a

conceptual model, a formalization, the development of a data exchange format, and
the implementation of supporting tools [65]. For micorarray experiments, a concep-
tual model about the minimum information that is required for the description of
such an experiment is specified by MIAME (Minimum Information About a
Microarray Experiment [65]). Similar specifications have also been done for, e.g.,
proteomics data with MIAPE (Minimum Information About a Proteomics Experi-
ment [66]), or systems biology models with MIRIAM (Minimum information
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requested in the annotation of biochemical models). MIRIAM specifies a set of rules
for curating quantitative models of biological systems that define procedures for
encoding and annotating models represented in machine-readable form [67].

2.4.4
Data Resources

The development of models of biological systems requires diverse kind of data. This
is, for instance, information about the different model components (e.g., metabo-
lites, proteins, and genes) and their different functions and interactions. Such
information can be extracted from literature or dedicated data resources, like pathway
databases. Two pathway databases that are well known are KEGG und Reactome.
Both are described below in more detail. Another important data for modeling are
information about reaction kinetics. Database dealingwith such data are described in

Figure 2.16 Systems Biology Graphical Notation
(SBGN). (a) State transition diagram. (b) Entity
relation diagram describing gene regulation and
transcription of a gene. The two transcription
factors TF A and TF A0 compete for the same
transcription factor-binding site. If one of the

transcription factors is bound, the binding site is
blocked for the other one, but only TF A can
activate the transcription of the gene. The
abbreviation �ct� indicates conceptual types of
the respective entity.
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more detail in Sections 2.4.4.2 and 3.1. Further information about databases
providing primary data is given in Chapter 16.

2.4.4.1 Pathway Databases

Kyoto Enzyclopedia of Genes and Genomes Kyoto Enzyclopedia of Genes and
Genomes (KEGG; http://www.genome.ad.jp/kegg/) is a reference knowledge base
offering information about genes and proteins, biochemical compounds and reac-
tions, and pathways. The data is organized in three parts: the gene universe
(consisting of the GENES, SSDB, and KO database), the chemical universe (with
the COMPOUND, GLYCAN, REACTION, and ENZYME databases which are
merged as LIGAND database), and the protein network consisting of the PATHWAY
database [68]. Besides this, the KEGG database is hierarchically classified into
categories and subcategories at four levels. The five topmost categories are metabo-
lism, genetic information processing, environmental informationprocessing, cellular
processes, and human diseases. Subcategories of metabolism are, e.g., carbohydrate,
energy, lipid, nucleotide, or amino acid metabolism. These are subdivided into
the different pathways, like glycolysis, citrate cycle, purine metabolism, etc. Finally,
the fourth level corresponds to the KO (KEGG Orthology) entries. A KO entry
(internally identified by a K number, e.g., K00001 for the alcohol dehydrogenase)
corresponds to a group of orthologous genes that have identical functions.
Thegeneuniverseoffers informationaboutgenesandproteinsgeneratedbygenome

sequencing projects. Information about individual genes is stored in the GENES
database, which is semiautomatically generated from the submissions to GenBank,
the NCBI RefSeq database, the EMBL database, and other publicly available organism-
specific databases. K numbers are further assigned to entries of the GENES database.
The SSDB database contains information about amino acid sequence similarities
between protein-coding genes computationally generated from the GENES database.
This is carried out for many complete genomes and results in a huge graph depicting
protein similarities with clusters of orthologous and paralogous genes.
The chemical universe offers information about chemical compounds and reac-

tions relevant to cellular processes. It includes more than 11,000 compounds
(internally represented by C numbers, e.g., C00001 denotes water), a separate
database for carbohydrates (nearly 11,000 entries; represented by a number preceded
by G, e.g., G10481 for cellulose), more than 6000 reactions (with R numbers, e.g.,
R00275 for the reaction of the superoxide radical into hydrogen peroxide), and more
than 4000 enzymes (denoted by EC numbers as well as K numbers for orthologous
entries). All these data are merged as LIGAND database [69]. Thus, the chemical
universe offers comprehensive information about metabolites with their respective
chemical structures and biochemical reactions.
KEGG�s protein network provides information about protein interactions com-

prisingpathways andprotein complexes. The 235KEGGreference pathwaydiagrams
(maps), offered on the website, give clear overviews of important pathways. Organ-
ism-specific pathway maps are automatically generated by coloring of organism-
specific genes in the reference pathways.
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The KEGG database can be queried via the web interface, e.g., for genes, proteins,
compounds, etc. Access to the data via FTP (http://www.genome.ad.jp/anonftp) as
well as access to it via a SOAP server (http://www.genome.ad.jp/kegg/soap) is
possible for academic users, too.

Reactome Reactome (formerly known as Genome Knowledgebase [70–72]) is an
open, online database of fundamental human biological processes. The Reactome
project is managed as a collaboration of the Cold Spring Harbor Laboratory,
the European Bioinformatics Institute (EBI), and the Gene Ontology Consortium.
The database is divided into severalmodules of fundamental biological processes that
arethought tooperate inhumans.Eachmoduleofthedatabasehasoneormoreprimary
authors and is further peer reviewed by experts of the specific field. Each module can
also be referenced by its revision date and thus can be cited like a publication.
On one hand, the Reactome database is intended to offer valuable information for

the wet-lab scientist, who wants to know, e.g., more about a specific gene product she
or he is unfamiliarwith.On the other hand, theReactomedatabase can be used by the
computational biologist to draw conclusions from large data sets like expression data
gained by cDNA chip experiments.
Another tool offered by Reactome is the �Pathfinder.� This utility enables the user

to find the shortest path between two physical entities, e.g., the shortest path between
the metabolites D-fructose and pyruvate, or the steps from the primary mRNA to its
processed form. The computed path can be shown graphically. The pathfinder offers
also the possibility to exclude specific entities, like themetabolites ATPorNADH that
show high connectivity and thus their input might lead to a path that is not the one
intended to be found.
Data fromReactome can be exported in various formats uponwhich are SBML and

BioPAX.

2.4.4.2 Databases of Kinetic Data
High-throughput projects, such as the international genome sequencing efforts,
accumulate large amounts of data at an amazing rate. These data are essential for the
reconstruction of phylogenetic trees and gene-finding projects. However, for kinetic
modeling, which is at the heart of systems biology, kinetic data of proteins and
enzymes are needed.Unfortunately, this type of data is notoriously difficult and time-
consuming to obtain since proteins often need individually tuned purification and
reaction conditions. Furthermore, the results of such studies are published in a large
variety of journals fromdifferent fields. In this situation, the databases BRENDA and
SABIO-RK aim to be comprehensive resources of kinetic data. They are discussed in
more detail in Section 4.1.1.

2.4.4.3 Model Databases
A lot of different mathematical models of biological systems have already been
developed in the past and are described in the literature. However, these models are
usually not available in a computer-amenable format. During the last years, big
efforts have been done on the gathering and implementation of existing models in

2.4 Tools and Data Formats for Modeling j77



databases. Two well-known databases on this are BioModels and JWS, which are
described in more detail in the following.

BioModels The BioModels.net project (http://biomodels.net) is an international
effort to (i) define agreed-upon standards for model curation, (ii) define agreed-upon
vocabularies for annotating models with connections to biological data resources,
and (iii) provide a free, centralized, publicly accessible database of annotated,
computational models in SBML, and other structured formats. The ninth release
of the databases has 192 models, of which 150 are in the curated and 42 are in the
noncurated branch. Models can be browsed in the web interface, online simulations
can be performed via the external simulation engine of JWS online (see below), or
they can be exported in several prominent file formats (e.g., SBML, CellML, BioPAX)
for external usage by other programs.

JWS Another model repository that is providing kinetic models of biochemical
systems is JWS online [73]. As of February 2008, this model repository provides 84
models (http://jjj.biochem.sun.ac.za). Models in JWS online can be interactively run
and interrogated over the internet.

Exercises and Problems

1. A canonical view of the upper part of glycolysis starts with glucose and
comprises the following reactions (in brackets: possible abbreviations): The
enzyme hexokinase (HK, E1) phosphorylates glucose (Gluc, S1) to glucose-6-
phosphate (G6P, S2) under consumption of ATP (S5) and production of ADP
(S6). The enzyme phosphoglucoisomerase (PGI, E2) converts glucose-6-phos-
phate to fructose-6-phosphate (F6P, S3). The enzyme phosphofructokinase
(PFK, E3) phosphorylates F6P a second time to yield fructose-1,6-bisphosphate
(F1,6,BP, S4). The enzyme fructosebisphosphatase catalyzes the reverse
reaction (E4).

(a) Sketch the reaction network and formulate a set of differential equations
(without specifying the kinetics of the individual reactions).

(b) Formulate the stoichiometric matrix N. What is the rank of N?
(c) Calculatesteady-state fluxes(matrixK) andconservation relations (matrixG).
(d) Compare your results with Example 2.6.

2. (a) Write down the sets of differential equations for the networks N1–N6
given in Table 2.4 without specifying their kinetics.

(b) Determine the rank of the stoichiometric matrices, independent steady-
state fluxes, and conservation relations.

Do all systems have a (nontrivial) steady state?

3. Inspect networks N3 and N4 in Table 2.4. Can you find elementary flux modes?
Use an available tool (e.g., Metatool) to check out.
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4. Assign the following kinetics to network N3 in Table 2.4: v1¼ k1, v2¼ (Vmax2�S1)/
(Km2þ S1), v3¼ (Vmax3�S1)/(Km3þ S1) with k1¼ 10, Vmax2¼ 3, Km2¼ 0.2, Vmax2

5, andKm2¼ 0.4. Compute the steady-state concentration of S1 and calculate the
flux control coefficients.

5. For the reaction system A�!v1 B; B�!v2 C; C�!v3 A with v1¼ k1�A, v2¼ k2�B, v3¼
k3�C, and k1¼ 2, k2¼ 2, k3¼ 1, write down the set of systems equations.

(a) Compute the Jacobian J!
(b) Determine the eigenvalues and eigenvectors of the Jacobian J!
(c) What is the general solution of the ODE system?
(d)Compute the solutionwith the initial conditionA(0)¼ 1,B(0)¼ 1,C(0)¼ 0!

6. The Jacobian Aa of the following ODE system depends on the parameter a:

d
dt

x
y

� �
¼ 0 �1

10þ a a

� �
x
y

� �

(a) To every specific choice of parameter a belongs a point (TrAa, DetAa) in the
plane spaned by trace and determinate of Aa. Draw the curve (Tr Aa, DetAa)
in this space for a as a changing parameter.

(b) For which values of a is (x,y)¼ (0,0) a saddle point, node or focus?

7. What is the use of standards important for the development of new systems
biology tools?
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