
Introduction to Python

Falko Krause

November 25, 2008

Abstract

Python (as in Monty Python’s Flying Circus) is fun! That is why it
is called Python. Python is a highly readable programming language. It
is based on multiple programming paradigms. You can use it to program
object-oriented, imperative and functional. Python is an interpreted lan-
guage - Python code can be executed at the moment it is written. Python
has great interactive tools and documentation tools.
This tutorial will explain Python mainly by example. It is build upon
the official Python tutorial (http://docs.python.org/tutorial/) and can be
considered a customized summary of the tutorial. The tutorial contains
my opinions about programming with Python and some personal humor
(in accordance with the common practice of Python documentation).

1

1 Getting Started

This part of the tutorial will make use of the software: Python, IPython. The
software used is freely available.

Python
http://www.python.org/

IPython
http://ipython.scipy.org
for Windows please have a look at
http://ipython.scipy.org/moin/IpythonOnWindows

1.1 Interactive Mode

One of the features that makes Python easy to learn is its ability to function
as a command line interpreter. In the command line interpreter (or Python
interactive shell), you can type in a command and Python will instantly respond
with the result. You can invoke the interactive shell by calling Python without
any arguments.

1 $ python
2 Python 2.5.2 (r252:60911, May 7 2008, 15:19:09)
3 [GCC 4.2.3 (Ubuntu 4.2.3-2ubuntu7)] on linux2
4 Type "help", "copyright", "credits" or "license" for more information.
5 >>>

After starting up, Python prompts you for the next command with the primary
prompt >>>.
For continuation lines, it prompts with the secondary prompt

6 >>> myflag = 1
7 >>> if myflag:
8 ... print "Be careful not to fall off!"
9 ...

10 Be careful not to fall off!

If you read the next Section (2) you will understand the example in detail but
before that, I will make a short excursion to a software that extends the basic
Python interactive shell into a very powerful tool.

IPython If you are serious about learing Python, you will have to get IPython.
IPython is an extension of the interactive shell, it “is an interactive shell for the
Python programming language that offers [...] additional shell syntax, code
highlighting, and tab completion.” (Wikipedia). This means that your com-
mands will be displayed in nice colors (unfortunately not in this script), that
you can press the tab key or the “up” key to autocomplete e.g. variable names
(this will be referred to as <TAB> and <UP>) and that you will be able to access
the Python documentation instantly.

2 The Basics

Before we start to actually use Python, two important concepts should be ex-
plained.

2

Duck Typing
This style of dynamic typing (assigning a datatype to a variable) is widespread
among current popular interpreted languages. Its motto is “If it walks like
a duck and quacks like a duck, I would call it a duck.”, in Python this
means that you can advise an integer number to a variable and the variable
will be of type integer (without ever declaring this fact explicitly).

Indentation
Indentation determines the context of commands. This makes Python
highly readable and rids it of most of the “swearword”
symbols ($])}() that other languages depend on (and which are very
inconvenient to type on a german keyboard layout). The actual use will
be demonstrated in this tutorial many times.

2.1 Datatypes

Numbers If you read “The Little Prince”, you know that in the world of
adults numbers are very important. Here is how Python helps you to get along
in the world of adults.
If you start the Python interactive shell (or IPython), you can use it as a calcu-
lator. Just type some integer numbers (int) with some common mathematical
symbols.

1 >>> 2+2
2 4
3 >>> (50-5*6)/4
4 5

If you want to “save” your numbers you can assign them to a variable using the
= sign. Now you can reuse them for complicated calculations like the one below.

5 >>> width = 20
6 >>> height = 5*9
7 >>> width * height
8 900

Of course integer numbers are not enough. In science, we need floating point
numbers (float).

9 >>> 3 * 3.75 / 1.5
10 7.5

You can convert an int into a float - just like that.
11 >>> float(width)
12 20.0

This kind of type casting works for most datatypes in Python (!). Python also
knows about complex numbers and has functions like rounding (round()) etc.
built in and ready to use.

Strings String can be expressed in several ways, here is one:
1 >>> ’spam eggs’
2 ’spam eggs’

Enclosing a string in single quotes (’) will not interpret the contents, this means
a newline ’\n’ will return just the characters in the string \n. Double quoted
strings are interpreted and will convert the newline character(s) into a new line.
You could write a string that spans multiple lines like that:

3

3 >>> hello = "This is a rather long string containing\n\
4 ... several lines of text just as you would do in C.\n\
5 ... Note that whitespace at the beginning of the line is\
6 ... significant."
7 >>>
8 >>> print hello
9 This is a rather long string containing

10 several lines of text just as you would do in C.
11 Note that whitespace at the beginning of the line is significant.

At the end of each line a \ declares that the same command continues on the
next line. But you could also enclose your string in triple quotes (’’’ or """).

12 >>> hello = ’’’This is a rather long string containing
13 ... several lines of text just as you would do in C.
14 ... Note that whitespace at the beginning of the line is
15 ... significant.’’’
16 >>> print hello
17 This is a rather long string containing
18 several lines of text just as you would do in C.
19 Note that whitespace at the beginning of the line is
20 significant.

Concatenating strings is easy.
13 >>> word = ’Help’ + ’A’
14 >>> word
15 ’HelpA’

In IPython you can see all the string functions by tabbing them
In [1]: word = ’Help’ + ’A’

In [2]: word
Out[2]: ’HelpA’

In [3]: word.<TAB>
str.__add__ str.__hash__ str.__subclasses__ str.lower
str.__base__ str.__init__ str.__weakrefoffset__ str.lstrip
str.__bases__ str.__itemsize__ str.capitalize str.mro
str.__basicsize__ str.__le__ str.center str.partition
str.__call__ str.__len__ str.count str.replace
str.__class__ str.__lt__ str.decode str.rfind
str.__cmp__ str.__mod__ str.encode str.rindex
str.__contains__ str.__module__ str.endswith str.rjust
str.__delattr__ str.__mro__ str.expandtabs str.rpartition
str.__dict__ str.__mul__ str.find str.rsplit
str.__dictoffset__ str.__name__ str.index str.rstrip
str.__doc__ str.__ne__ str.isalnum str.split
str.__eq__ str.__new__ str.isalpha str.splitlines
str.__flags__ str.__reduce__ str.isdigit str.startswith
str.__ge__ str.__reduce_ex__ str.islower str.strip
str.__getattribute__ str.__repr__ str.isspace str.swapcase
str.__getitem__ str.__rmod__ str.istitle str.title
str.__getnewargs__ str.__rmul__ str.isupper str.translate
str.__getslice__ str.__setattr__ str.join str.upper
str.__gt__ str.__str__ str.ljust str.zfill

In [4]: word.upper()
Out[4]: ’HELPA’

4

By the way, if you want to get your last command back, you can press “up” and
it will autocomplete your command (even if it was in the last session)
In [4]:wor<UP>

Lists Python has a variety of list types
The most basic type is the tuple.

1 >>> t = 12345, 54321, ’hello!’
2 >>> t
3 (12345, 54321, ’hello!’)
4 >>> # Tuples may be nested:
5 ... u = t, (1, 2, 3, 4, 5)
6 >>> u
7 ((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

A normal list is called list. This is the closest to what is known as “array” in
other programming laguages.

8 >>> l = [’spam’, ’eggs’, 100, 1234]
9 >>> l

10 [’spam’, ’eggs’, 100, 1234]

A list is not very practical if you need to find one of its members. That’s why
Python has the datatype set. The set internally uses a hash function to index
its values. In contrast to a list the set will not store duplicate entries. On a
set you can use the in command to check if a member exists. You can also use
functions like union, difference etc. to create new sets.

11 >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
12 >>> s = set(basket) # create a set without duplicates
13 >>> s
14 set([’orange’, ’pear’, ’apple’, ’banana’])
15 >>> ’orange’ in s # fast membership testing
16 True
17 >>> ’crabgrass’ in s
18 False

Very similar to a set is the Dictionary (dict). It contains key / value pairs
({key:value,key:value}). Basically the keys form a set that has for each entry
a value attached.

19 >>> d = {’jannis’: 4098, ’wolf’: 4139}
20 >>> d[’guido’] = 4127
21 >>> d
22 {’wolf’: 4139, ’guido’: 4127, ’jannis’: 4098}
23 >>> d[’jannis’]
24 4098

In the example above, a values are added/extracted by specifying their key in
square barckes.
In lists and tuples, element positions are the “keys”.

25 >>>t[0]
26 12345

And not to forget, str is a list type too!
A very convenient way to get subsets from tuples, lists and strs is to specify
start and end positions separated by a colon in the square brackets (list[start:end]).

27 >>> word = ’W00T this Python lesson is awesome’
28 >>> word.split()
29 [’W00T’, ’this’, ’Python’, ’lesson’, ’is’, ’awesome’]
30 >>> word[10:17]+word.split()[4]+word[-7:]
31 ’Python is awesome’

5

Leaving start or stop values empty is a shortcut to the very start of the list or
respectively the very end of the list. Negative values are subtracted from the
length of the list (-1 is thus the last element of the list).

Other Important Datatypes To express boolean values Python provides
the datatype bool. Its values are True and False. Sequences can act as
booleans, that is, an empty sequence (e.g. []) acts as False and a filled
sequence (e.g. [’a’,’b’]) acts as True. The int 0 is also eqivalent to False
- all other integers are equivalent to True. The same applies to float.
The datatype None is frequently used to represent the absence of a value. It has
only one value: None.

2.2 Control Flow

Due to the lack of creativity the introduction to control flow will start with the
classic example of the Fibonacci series.

while Statements There are many possible implementations of the Fibonacci
series, this one uses the while statement.

1 >>> a, b = 0, 1
2 >>> while b < 1000:
3 ... print b,
4 ... a, b = b, a+b
5 ...
6 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

The first line shows an example of a multiple assignment. The while loop on
the second line executes the indented code below as long as the boolean (bool)
statement follwing the while evaluates to True. The comma at the end of the
third line will prevent print to add a new line every time it is called.

if Statements Also if statements take a bool as input. To create a chain
of if statements that executes different commands depending on multiple con-
ditions, the elif statement (short for “else if”) can be used. In the following
example, chained “if” statements process the users input. (The user enters the
42 in this example.)

1 >>> x = int(raw_input("Please enter an integer: "))
2 Please enter an integer: 42
3 >>> if x < 0:
4 ... x = 0
5 ... print ’Negative changed to zero’
6 ... elif x == 0:
7 ... print ’Zero’
8 ... elif x == 1:
9 ... print ’Single’

10 ... else:
11 ... print ’More’
12 ...
13 More

for Statements Here is one of the strengths of Python. Looping through
lists is very simple and intuitive. If you programmed in other languages before
that do not have similar “for” loops, you might need a while to adapt to the

6

fact that you can iterate over the items of any sequence (str,list,tuple,set)
without having to deal with indices.

1 >>> # Measure some strings:
2 ... a = [’cat’, ’window’, ’defenestrate’]
3 >>> for x in a:
4 ... print x, len(x)
5 ...
6 cat 3
7 window 6
8 defenestrate 12

The range() Function Generating lists of numbers (e.g. list indices) is
also easy.

1 >>> range(10)
2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3 >>> range(5, 10)
4 [5, 6, 7, 8, 9]
5 >>> range(0, 10, 3)
6 [0, 3, 6, 9]
7 >>> range(-10, -100, -30)
8 [-10, -40, -70]

Now you can show the index number of the list entry, if you really need too.
9 >>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]

10 >>> for i in range(len(a)):
11 ... print i, a[i]
12 ...
13 0 Mary
14 1 had
15 2 a
16 3 little
17 4 lamb

The example above is rather complicated. In actual source-code, you would
write

18 >>> for i,b in enumerate(a):
19 ... print i, b
20 ...
21 0 Mary
22 1 had
23 2 a
24 3 little
25 4 lamb

For looping trough dictionaries look into the functions keys(), values() and
iteritems(). They are part of the dict class. Remember that in IPython, you
can easily find them by typing mydict.<TAB>.

break and continue Statements, and else Clauses on Loops You can
break out of the smallest enclosing loop - or just skip to the next iteration of the
loop with continue. A very convenient feature is that you can execute code in
an else statement that follows a loop. It is executed when the loop terminates
through exhaustion of the list (with for) or when the condition becomes false
(with while).

1 >>> for n in range(2, 10):
2 ... for x in range(2, n):
3 ... if n % x == 0:
4 ... print n, ’equals’, x, ’*’, n/x
5 ... break
6 ... else:# loop fell through without finding a factor
7 ... if n==3:
8 ... continue

7

9 ... print n, ’is a prime number’
10 ...
11 2 is a prime number
12 4 equals 2 * 2
13 5 is a prime number
14 6 equals 2 * 3
15 7 is a prime number
16 8 equals 2 * 4
17 9 equals 3 * 3

pass Statements The laziest statement is pass, it will do nothing. This
is very helpful if you write the structure of you code first and fill the actual
commands later.

1 >>> x = int(raw_input("Please enter an integer: "))
2 Please enter an integer: 10
3 >>> if x < 0:
4 ... pass
5 ... elif x == 42:
6 ... pass #TODO must fill the answer to life, the universe, and everything here later
7 ... else:
8 ... print ’More’
9 ...

10 More

2.3 Functions

Functions are defined with def followed by the function name followed by round
brackets that contain the arguments passed to the function. A function can
return values by using return.

1 >>> def sagMiau(who):
2 ... return who+" sagt Miauuuuu"
3 ...
4 >>> print sagMiau(’Jannis’)
5 Jannis sagt Miauuuuu

Default Argument Values and Keyword Arguments You can assign
default values to the arguments passed to a function. In addition to that, you
can use an argument name as a keyword to pass this specific argument. This is
very useful for functions that have many arguments with default values of which
you only need to use a few.

6 >>> def sagKompliment(who,person="Falko",antwort="Oh danke"):
7 ... return who+’ sagt: ’+person+" du hast die Haare schoen.\n"+person+" sagt: "+...

...antwort
8 ...
9 >>> print sagKompliment("Jannis","Wolf")

10 Jannis sagt: Wolf du hast die Haare schoen.
11 Wolf sagt: Oh danke
12 >>> print sagKompliment("Timo",antwort="Verarschen kann ich mich selber")
13 Timo sagt: Falko du hast die Haare schoen.
14 Falko sagt: Verarschen kann ich mich selber

What amazed me in Python is that functions are not very different than other
datatypes.

15 >>> kmplmnt=sagKompliment
16 >>> print kmplmnt("Falko")
17 Falko sagt: Falko du hast die Haare schoen.
18 Falko sagt: Oh danke

8

Documentation Strings Python has a built in method of documenting your
source-code.

1 >>> def my_function():
2 ... """Do nothing, but document it.
3 ...
4 ... No, really, it doesn’t do anything.
5 ... """
6 ... pass
7 ...
8 >>> print my_function.__doc__
9 Do nothing, but document it.

11 No, really, it doesn’t do anything.

IPython uses this documentation in a very convenient way
1 In [1]: def my_function():
2 ...: ’’’ the same here ’’’
3 ...: pass
4 ...:

6 In [2]: my_function?
7 Type: function
8 Base Class: <type ’function’>
9 String Form: <function my_function at 0x83f4f7c>

10 Namespace: Interactive
11 File: /home/select/MPG/SBML/semanticSBML/trunk/<ipython console>
12 Definition: my_function()
13 Docstring:
14 the same here

17 In [3]: str?
18 Type: type
19 Base Class: <type ’type’>
20 String Form: <type ’str’>
21 Namespace: Python builtin
22 Docstring:
23 str(object) -> string

25 Return a nice string representation of the object.
26 If the argument is a string, the return value is the same object.

3 More on Lists

list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert(0, x) inserts at the front of
the list, and a.insert(len(a), x) is equivalent to a.append(x).

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there
is no such item.

list.pop(i)
Remove the item at the given position in the list, and return it. If no
index is specified, a.pop() removes and returns the last item in the list.

9

list.index(x)
Return the index in the list of the first item whose value is x. It is an
error if there is no such item.

list.count(x)
Return the number of times x appears in the list.

list.sort()
Sort the items of the list, in place.

list.reverse()
Reverse the elements of the list, in place.

Using Lists as Stacks and Queues is easy with the functions above
27 >>> stack = [3, 4, 5]
28 >>> stack.append(6)
29 >>> stack
30 [3, 4, 5, 6]
31 >>> stack.pop()
32 6
33 >>> queue = ["Eric", "John", "Michael"]
34 >>> queue.append("Terry") # Terry arrives
35 >>> queue.append("Graham") # Graham arrives
36 >>> queue.pop(0)
37 ’Eric’
38 >>> queue.pop(0)
39 ’John’
40 >>> queue
41 [’Michael’, ’Terry’, ’Graham’]

List Comprehensions The “old-school” method of manipulating lists in
loops is hardly ever used in Python because of its list comprehensions feature.
It enables you to manipulate a list on the fly. Once you get used to this feature
you will never want to miss it again.

42 >>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
43 >>> [weapon.strip() for weapon in freshfruit]
44 [’banana’, ’loganberry’, ’passion fruit’]
45 >>> vec = [2, 4, 6]
46 >>> [3*x for x in vec]
47 [6, 12, 18]
48 >>> [3*x for x in vec if x > 3]
49 [12, 18]

4 Modules

A file containing Python source-code is called a module. If you write the module
fibo.py (contents below) with your favorite text editor -
"""
Fibonacci numbers module
"""

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []

10

a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

you can import it into the interactive shell (or another module) by calling import
modulename (without the .py extension) if the file is in the same folder or
Pythons search path. By adding a . to the module name you can access the
functions of the module.
>>> import fibo
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
’fibo’

Executing Modules as Scripts If you want to execute your module with
$ python fibo.py <arguments>

you can add
26 if __name__ == "__main__":
27 import sys
28 fib(int(sys.argv[1]))

to your fibo.py file. The fist line evaluates to True if the file is executed by the
Python interpreter. The second line imports a module called sys. This module
eables you to read argument that the user passed to the script with sys.argv[]
(in this example the first argument that was passed).
$ python fibo.py 50
1 1 2 3 5 8 13 21 34

In Linux, you can make your file directly executable by adding as first line
#! /usr/bin/env python

and setting the file as executable
$ chmod +x fibo.py
$ mv fibo.py fibo
$./fibo 50
1 1 2 3 5 8 13 21 34

In Linux terms, you would now refer to the file as a Python script. If you move
this scrip to /usr/bin, it will be in your global search path an can be executed
from any location of your filesystem. If you are using Linux, you have most
likely already used a couple of Python scripts without ever noticing it.

4.1 Standard Modules

Python comes with a library of standard modules. Some of them will be in-
troduced in Section 8. One of the most important modules is sys. One of its
function was just introduced. Besides argument parsing, it has functions for
e.g. exiting a script sys.exit(). Remember you can find out about that in
IPython by typing sys.<TAB>.

11

4.2 Packages

A folder containing modules is called a package. This sentence is good to re-
member but only really true if the folder contains a file called init .py. A
package can of course also consist of subpackages. Here is an example:
sound/ Top-level package

__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

strange/ Subpackage for fibonacci
__init__.py
fibo.py

Just like modules packages can be imported. You can import a specific sub-
package by using toppackage.subpackage.

1 >>>import sound.strange.fibo
2 >>> sound.strange.fibo.fib(1000)
3 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

5 Input and Output

5.1 “Old” string formatting

There are newer and fancier ways to obtain nicely formatted strings in Python,
but I chose this one since in my opinion it is the shortest and easiest method
of string formatting. A formatted string is a string containing %<someletter>.
The string is followed by a % and has as many variables/values (in a tuple) as
% signs in the string. The <someletter> determines how the variables/values
are interpreted. A %<number><someletter> can determine the precision of a
number or the number of filling space characters for a string.

1 >>> b = ’hello’
2 >>> a = ’!’
3 >>> c = "world"
4 >>> print ’%s %s %s’%(b,c,a)
5 hello world !
6 >>> print ’%20s’%b
7 hello
8 >>> print ’%-20s%s’%(b,a)
9 hello !

10 >>> x = 1.23456789
11 >>> print ’%e | %f | %g’ % (x, x, x)
12 1.234568e+00 | 1.234568 | 1.23457
13 >>> print ’%4d’%10
14 10
15 >>> print ’%.4d’%10
16 0010

12

5.2 Reading and Writing Files

When you open a file with the command open, you have to define what you
want to do with the file, e.g. ’r’ read, ’w’ write, ’rw’ read and write, ’a’
append (like write, but append to the end of the file). The function will return
a file handle to you. On the file handle you can do operations like reading a file
or writing contents into the file.

1 >>> f=open(’/etc/issue’, ’r’)
2 >>> f.read()
3 ’Ubuntu 8.10 \\n \\l\n\n’
4 >>> f.close()

If you are done with the file operations, it is always wise to close the filehandle.
On line two, we use the function read to read the whole file into a string; the
readline function will read the file line by line; but I especially like readlines,
it will read the whole file into a list.

5 >>> for line in open(’/etc/passwd’, ’r’).readlines():
6 ... print ’Length: %-5s Content: %s’%(len(line),line[:-1])
7 ...
8 Length: 32 Content: root:x:0:0:root:/root:/bin/bash
9 Length: 38 Content: daemon:x:1:1:daemon:/usr/sbin:/bin/sh

10 Length: 27 Content: bin:x:2:2:bin:/bin:/bin/sh
11 Length: 27 Content: sys:x:3:3:sys:/dev:/bin/sh

5.3 The pickle Module

“Serialization is the process of saving an object onto a storage medium [...] such
as a file” (Wikipedia). This module puts serialization at your fingertips.

1 >>> import pickle
2 >>> x=[(’man’,1),(2,’this is getting’),{True:’so very’,False:’complicated’}]
3 >>> f1=open(’test.picklefile’,’w’)
4 >>> pickle.dump(x, f1)
5 >>> f1.close()
6 >>> f2=open(’test.picklefile’,’r’)
7 >>> x = pickle.load(f2)
8 >>> x
9 [(’man’, 1), (2, ’this is getting’), {False: ’complicated’, True: ’so very’}]

6 Errors and Exceptions

Up until now we typed everything correctly into the interactive shell, but this
time we won’t!

1 >>> while True print ’Hello world’
2 File "<stdin>", line 1, in ?
3 while True print ’Hello world’
4 ^
5 SyntaxError: invalid syntax

In the example, the error is detected at the keyword print, since a colon (’:’) is
missing before it. File name and line number are printed, so you know where
to look in case the input came from a script.

13

Exceptions Have a look at some exceptions you could encounter in your
Python programming adventures

1 >>> 10 * (1/0)
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in ?
4 ZeroDivisionError: integer division or modulo by zero
5 >>> 4 + spam*3
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in ?
8 NameError: name ’spam’ is not defined
9 >>> ’2’ + 2

10 Traceback (most recent call last):
11 File "<stdin>", line 1, in ?
12 TypeError: cannot concatenate ’str’ and ’int’ objects

The last line of each exception tells you what is wrong. If one of these exception
is raised inside a Python script the script will terminate. This is not always
desirable, read on to see how to prevent this.

13 >>> while True:
14 ... try:
15 ... x = int(raw_input("Please enter a number: "))
16 ... break
17 ... except ValueError:
18 ... print "Oops! That was no valid number. Try again..."
19 ... else:
20 ... print "good boy!"
21 ...

If code in between in the try / except statements will raise the exception
specified behind except (ValueError), this exception will be caught and the
code enclosed by the except statement will be executed. If no exceptions are
raised, the except will be ignored. An optional else can be added to define
commands that are executed in case no exception is raised.

Raising Exceptions You can also raise exceptions whenever you feel like
it.

22 >>> raise Exception(’spam’, ’eggs’)
23 Traceback (most recent call last):
24 File "<stdin>", line 1, in <module>
25 Exception: (’spam’, ’eggs’)

Each exception is a class that inherits from the Exception base class. For now
we can just raise a basic Exception. Before we can create our own exceptions
we should understand how classes work in Python. At the end of the Section 7
I will show you how to create a custom exception.

7 Classes

Classes are the essential concept of object-oriented programming. The realiza-
tion of this concept in Python is (as you might already expect) easy to use.

Class Definition Syntax Let’s define a class.
1 >>> class MyLameClass:
2 ... pass

14

Class Objects This was too easy, right? Let’s create a more sophisticated
class.

3 >>> class Animal:
4 ... ’’’ This is an animal ’’’
5 ... nana="nana"
6 ... def __init__(self,number_of_legs):
7 ... self.legs=number_of_legs
8 ... def saySomething(self):
9 ... print "I am an Animal, I have %s legs" % self.legs

10 ...

Just like functions and modules, classes can have documentation strings.
Class objects support two kinds of operations: attribute references and instan-
tiation.
Attribute references use the standard syntax used for attribute references in
Python: obj.name

11 >>> Animal.nana
12 "nana"

Class instantiation uses the function notation. Just pretend that the class object
is a function that returns a new instance of the class.

13 >>> my_pet = Animal(4)

The command above created a new instance of the class that was assigned to
the local variable my pet. When a class is instantiated, the special function
init () is called. If you know other programming languages, this function is

known as constructor. The Python “constructor” is optional.
Class instances have instace variables and instance functions (methods), you
will recognize them by the variable self. In our example, we have created the
instance variable legs and the method saySomething(). In general, you will
only need instance variables and methods if you work with a class (along local
variables and functions for the use within the instance functions). You can use
a method by writing obj.method()

14 >>> my_pet.saySomething()
15 I am an Animal, I have 4 legs

7.1 Random Remarks

self The variable self is named “self” because of convention, there is no
special meaning behind it. It is however important to follow this convention if
you want to use e.g. an external source code documentation generator or if you
want to give your source code to other programmers

Just Do It Any function object that is a class attribute defines a method
for instances of that class. It is not necessary that the function definition is
textually enclosed in the class definition: assigning a function object to a local
variable in the class is also ok. For example:

16 >>> # Function defined outside the class
17 ... def f1(self, x, y):
18 ... return min(x, x+y)
19 ...
20 >>> class C:
21 ... f = f1
22 ... def g(self):

15

23 ... return ’hello world’
24 ... h = g
25 ...

You can also add instance variables and methods to a class instance later on.
26 >>> c=C()
27 >>> c.new=’oh interesting’
28 >>> c.new
29 ’oh interesting’
30 >>>

Naming Conventions There are two styles of writing strings in source-code
that I like.

CamelCase
writing compound words or phrases in which the words are joined without
spaces and are capitalized within the compound: ThisIsCamelCase

snake case
writing compound words or phrases in which the words are joined with
and underscore: this is snake case

In our project, we decided to follow the convention

variables snake case
functions camelCase
classes CamelCase

This will make your source-code easy to read (for yourself!). Of course you
still need to find good names for your variables, classes and functions.

7.2 Inheritance

A key feature of object-orientation and classes is inheritance, here is an example
31 >>> class Cat(Animal):
32 ... ’’’This is the animal cat’’’
33 ... def __init__(self):
34 ... ’’’cats always have 4 legs, this is initialized in this function’’’
35 ... Animal.__init__(self,4)
36 ... def petTheCat(self):
37 ... print "purrrrrr"
38 ...
39 >>> snuggles=Cat()
40 >>> snuggles.saySomething()
41 I am an Animal, I have 4 legs
42 >>> snuggles.petTheCat()
43 purrrrrr
44 >>>

It is also possible to have a multiple inheritance in Python (class DerivedClassName(Base1,
Base2, Base3)).

7.3 Private Variables

To make a variable private you add two underscores before the variable name
e.g. self. furr. Private variables (and methods) can only be accessed from
within the class (or module) they are defined in.

16

7.4 Odds and Ends

You can (ab)use classes for data storage.
1 >>> class MyData:
2 ... pass
3 ...
4 >>> store=MyData()
5 >>> store.highth=200
6 >>> store.with=400

7.5 Exceptions Are Classes Too

Like I promised before, I will now show you how to create a custom exception.
1 >>> class MyError(Exception):
2 ... def __init__(self, value):
3 ... self.value = value
4 ... def __str__(self):
5 ... return repr(self.value)
6 ...
7 >>> try:
8 ... raise MyError(2*2)
9 ... except MyError as e:

10 ... print ’My exception occurred, value:’, e.value
11 ...
12 My exception occurred, value: 4
13 >>> raise MyError, ’oops!’
14 Traceback (most recent call last):
15 File "<stdin>", line 1, in ?
16 __main__.MyError: ’oops!’

7.6 Generators

Generators are written like regular functions but use the yield statement (in-
stead of return) whenever they want to return data.

1 >>> def reverse(data):
2 ... for index in range(len(data)-1, -1, -1):
3 ... yield data[index]
4 ...
5 >>> for char in reverse(’golf’):
6 ... print char
7 ...
8 f
9 l

10 o
11 g

8 A Very Brief Tour of the Standard Library

8.1 Operating System Interface

The os module provides dozens of functions for interacting with the operating
system:

1 >>> import os
2 >>> os.system(’time 0:02’)
3 0
4 >>> os.getcwd() # Return the current working directory
5 ’C:\\Python26’
6 >>> os.chdir(’/server/accesslogs’)
7 >>> os.path.exists(’/etc/issue’) # check if a file or folder exists
8 True

17

8.2 Optparser

The optparse module enables you to write a simple interface to your Python
script. The following file will be saved as test.py and set to be executable (see
Section 4).
#!/usr/bin/env python

import optparse,sys

if __name__ == ’__main__’:

parser = optparse.OptionParser()
parser.add_option("-i", "--infile", dest="infile", help="Input file for this ...
...script")

parser.add_option("-o", "--outfile", dest="outfile", default="", help="Output file...
... for this script")

(options,args) = parser.parse_args()

if not options.infile and not options.outfile:
print "\nNo input file or output file specified\n"
parser.print_help()
sys.exit()

else:
contents=open(options.infile,’r’).read()
open(options.outfile,’w’).write(contents+’\nthis is new content’)

You can now execute your script and it will give you a nicely structured output
that explains its usage.
$./test.py

No input file or output file specified

Usage: test.py [options]

Options:
-h, --help show this help message and exit
-i INFILE, --infile=INFILE

Input file for this script
-o OUTFILE, --outfile=OUTFILE

Output file for this script
$./test.py -h
Usage: test.py [options]

Options:
-h, --help show this help message and exit
-i INFILE, --infile=INFILE

Input file for this script
-o OUTFILE, --outfile=OUTFILE

Output file for this script
$ echo "hello world">myfile.txt
$ cat myfile.txt
hello world
$./test.py -i myfile.txt -o myoutfile.txt
$ cat myoutfile.txt
hello world

this is new content
$

18

9 Writing a Sophisticated Bioinformatics Appli-
cation

In this last section, we will write a very sophisticated bioinformatics application
using the combined knowledge of this tutorial. For that, we will need some extra
tools. The tools are freely available and run on Linux, Windows and Os X.

libSBML
http://sbml.org/Software/libSBML (don’t forget to install the Python
bindings)

Graphviz
http://www.graphviz.org/

Epydoc
http://epydoc.sourceforge.net/

The application will generate a graphical representation of an SBML model.
For that, it will extract the information from the SBML file using the libSBML.
The libSBML can be imported as a module. The graph images are generated
by the graphviz program dot.
The following source-code will be saved as sbml graph.py and set as executable.
#!/usr/bin/env python
’’’
B{SBML Graph Representation}
this module generates a graphical representations of SBML models
’’’

import os,sys,optparse,libsbml

dot_path= ’/usr/bin/dot’ # configure the path to graphviz dot executable here

class SBMLGraph():
’’’this class enables you to create graph representations of SBML models’’’

def __init__(self,sbml_file_name):
’’’
check if the sbml file exists
if it exists generate a graph representation
if not return an error message to the use and exit
@param sbml_file_name: path to the sbml file
@type sbml_file_name: str
’’’
self.graph_dot=’’
self.in_file_path=sbml_file_name
if not os.path.exists(self.in_file_path):

print ’The file %s was not found’ % self.in_file_path
sys.exit(1)

else:
document = libsbml.readSBMLFromString(open(self.in_file_path,’r’).read())
model= document.getModel()
self.graph_dot=self.generateGraph(model)

def generateGraph(self,model):
’’’
@param model: libsbml model instance
@type model: libsbml.Model
@return: graph representation as string in dot format
@rtype: str
’’’
#generate a dictionary of all species in the sbml file
id2libsbml_obj={}
for species in list(model.getListOfSpecies()):

id2libsbml_obj[species.getId()]=species

out="digraph sbmlgraph {\n"

19

#go through all reactions
for reaction in list(model.getListOfReactions()):

for i in range(reaction.getNumReactants()):
reactant_name= id2libsbml_obj[reaction.getReactant(i).getSpecies()].getName...
...() or reaction.getReactant(i).getSpecies()

out+= "\tS_%s -> R_%s\n" % (reactant_name,reaction.getName() or reaction....
...getId())

for i in range(reaction.getNumProducts()):
product_name= id2libsbml_obj[reaction.getProduct(i).getSpecies()].getName()...
... or reaction.getProduct(i).getSpecies()

out += "\tR_%s -> S_%s\n" % (reaction.getName() or reaction.getId(),...
...product_name)

return out +"}"

def writeImage(self,format=’svg’,filename=’’):
’’’
write the graph image to the hard disk
@param format: output image format
@type format: str
@param filename: filename of image
@type filename: str
’’’
if not filename:

filename = os.path.splitext(os.path.basename(self.in_file_path))[0]+’.’+format

open(’temp.dot’,’w’).write(self.graph_dot)
os.system("%s temp.dot -T%s -o %s"%(dot_path,format,filename))
os.remove(’temp.dot’)

if __name__ == ’__main__’:

parser = optparse.OptionParser()
parser.add_option("-i", "--infile", dest="infile", help="Input: an SBML file")

parser.add_option("-o", "--outfile", dest="outfile", default="", help="specify a ...
...out filename, this is optional")

parser.add_option("-f", "--imageformat", dest="format", default="", help="output ...
...formats are: svg, png, ps, eps, tiff, bmp")

(options,args) = parser.parse_args()

if not options.infile:
print "\nNo input file specified\n"
parser.print_help()
sys.exit()

else:
graph=SBMLGraph(options.infile)
graph.writeImage(filename=options.outfile,format=options.format)

Here are some execution examples of our script. Since we do not have a SBML
model yet, we download a SBML model from the BioModel.net database with
wget (line 17).

1 $./sbml_graph.py

3 No input file specified

5 Usage: sbml_graph.py [options]

7 Options:
8 -h, --help show this help message and exit
9 -i INFILE, --infile=INFILE

10 Input: an SBML file
11 -o OUTFILE, --outfile=OUTFILE
12 specify a out filename, this is optional
13 -f FORMAT, --imageformat=FORMAT
14 output formats are: svg, png, ps, eps, tiff, bmp
15 $./sbml_graph.py -i nofile.xml -f png
16 The file nofile.xml was not found
17 $ wget http://www.ebi.ac.uk/biomodels/models-main/publ/BIOMD0000000001.xml
18 ...
19 $ ls

20

20 BIOMD0000000001.xml sbml_graph.py
21 $./sbml_graph.py -i BIOMD0000000001.xml -f png
22 $ ls
23 BIOMD0000000001.png BIOMD0000000001.xml sbml_graph.py

The created image can be seen in Figure 1. As a final step, we autogenerate a

Figure 1: This is the resulting image from our script sbml graph.py

good-looking source-code documentation with Epydoc. As you notice, there are
some special strings in the Python documentation like @param. These strings
enhance the documentation with some text formatting. Let’s generate the doc-
umentation.

24 $ epydoc sbml_graph.py

By default, Epydoc will generate a HTML documentation. The main page can
be seen in Figure 2 and the documentation of the class SBMLGraph in Figure 3.

21

Figure 2: This is the index page of the html documentation generated by Epy-
doc.

Figure 3: This is the documentation of the class SBMLGraph generated by Epy-
doc.

22

